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Matchings

Let G = (V ,E ) be a graph

A matching M ⊆ E is a subset of non-adjacent edges

matching not a matching

M is maximal if M ∪ {e} is not a matching, for every e ∈ E \M

maximal not maximal

M∗ is maximum if for every other matching M ⊆ E : |M∗| ≥ |M|

maximum

Property: |maximal matching| ≥ 1
2 |maximum matching|
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Computing Maximal Matchings is often easy

Goal: Maximum Matching approximation (better than 1/2-approx.)

In many computational models... (e.g. streaming, distributed models)

computing maximal matchings is easy

computing maximum matching approximations is more difficult

Edge-arrival Streaming Model:

Input stream: Sequence of edges of input graph G = (V ,E ) with
n = |V | in arbitrary order

S = e2e1e4e3

Goal: Few passes algorithms with small space

Streaming Maximal Matching Algorithm: Insert current edge into
initially empty matching if possible (Greedy), using space Õ(n)
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Lidiya Khalidah binti Khalil and Christian Konrad Large Matchings via a Maximal Matching Oracle 3 / 17



Computing Maximal Matchings is often easy

Goal: Maximum Matching approximation (better than 1/2-approx.)

In many computational models... (e.g. streaming, distributed models)

computing maximal matchings is easy

computing maximum matching approximations is more difficult

Edge-arrival Streaming Model:

Input stream: Sequence of edges of input graph G = (V ,E ) with
n = |V | in arbitrary order

S = e2e1e4e3

Goal: Few passes algorithms with small space

Streaming Maximal Matching Algorithm: Insert current edge into
initially empty matching if possible (Greedy), using space Õ(n)
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State of the Art Streaming Matching Algorithms

# passes Approximation det/rand Reference
Bipartite Graphs
1 1

2 det Greedy, folklore

2 2−
√

2 ≈ 0.5857 rand Konrad ’18
3 0.6067 rand Konrad ’18
O( 1

ε2 ) 1− ε det Assadi, Liu, Tarjan ’21
General Graphs
1 1

2 det Greedy, folklore
2 0.53125 det Kale and Tirodkar ’17
1
ε

O( 1
ε ) 1− ε det Tirodkar ’18

Most of these algorithms (including previous works) solely run Greedy
in carefully selected subgraphs in each pass, thereby collecting edges and
outputting the largest matching among the edges stored.

How large a matching can we compute if we solely invoke Greedy
in each pass?
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Maximal Matching Oracle

Matching Game:

Player Oracle

query(Vi )

response: maximal matching in G [Vi ]

Player and oracle play r rounds of a “matching game”

In each round r :
1 Player queries a subset of vertices Vi ⊆ V
2 Oracle returns maximal matching Mi in induced subgraph G [Vi ]

Player outputs largest matching in ∪1≤i≤rMi

Research Question: What is the trade-off between the number of
rounds and the approximation ratio?
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Matching Game - Upper Bounds

Player Oracle

query(Vi )

maximal matching in G [Vi ]Upper Bounds for Bipartite Graphs:

1 round: 1
2 -approximation

query(V ) yields maximal matching in input graph

2 rounds: ≥ 1
2 -approximation

3 rounds: 3/5-approximation
3-pass streaming algorithm analysed by Kale and Tirodkar ’17

Θ( 1
ε6 ) rounds: (1− ε)-approximation

Streaming algorithm that runs in Θ( 1
ε5 ) passes by Eggert et al. ’12

can be adapted to the model

Upper Bounds for General Graphs: 7 (except 1 round 1
2 -approx.)
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Our Results

We give the following Lower Bound Results:

Bipartite Graphs

1 round 1
2 -approximation: optimal X

2 rounds ≥ 1
2 -approximation: 1

2 is best possible X

3 rounds 3
5 -approximation: optimal X

Θ( 1
ε6 ) rounds (1− ε)-approximation: Ω( 1

ε ) rounds are needed for a
(1− ε)-approximation

General Graphs (1 round 1/2-approximation)
Ω(n) rounds are needed for an approximation ratio 1

2 + ε, for any ε > 0

Outline:

1 Ω( 1
ε ) rounds are needed for a (1− ε)-approximation

2 Ω(n) rounds needed for ( 1
2 + ε)-approx. in general graphs, ε > 0

3 0.6-approximation lower bound for 3 rounds (main technical result)
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Lower Bound for Computing a (1− ε)-approximation

Theorem. Any query algorithm with approximation factor 1− ε requires
at least 1

ε − 1 queries,even in bipartite graphs.

Proof. Consider semi-complete graph on 2c vertices

Unique perfect matching M∗ of size c

Sub-optimal matching constitutes at best a
c−1
c = (1− 1

c )-approximation

Insight: Any query gives at most one edge from M∗

Hence, to achieve a (1− ε)-approximation, for ε = 1
c+1 ,

c = 1
ε − 1 queries are needed

Use multiple disjoint gadgets for arbitrary n
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Lower Bound for General Graphs

Theorem. Any r -round query algorithm for general graphs has an
approximation of at most 1

2 + r
n .

Proof. Consider a bomb graph on n vertices

“outside” edges = perfect matching

“inside” edge: blocks two optimal edges

( 1
2 + r

n )-approx: r “outside” edges

Insight: ≤ 1 “outside” edges per query

r queries needed
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Remarks

Deterministic / Randomized Query Algorithms:

Lower bounds on previous slides hold even if the input graph is
known by the player

They also hold for randomized query algorithms

Lower Bound for 3 Rounds on Bipartite Graphs:

More subtle argument

Oracle builds graph that depends on the queries

Lower bound therefore only holds for deterministic algorithms
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Three Round Query Algorithm for Bipartite Graphs

Algorithm (input graph G = (A,B,E ))

1 M ← query(A ∪ B)

2 ML ← query(M(A) ∪M(B))

3 B ′ ⊆ B(M)← endpoints of path of length two in M ∪ML

4 MR ← query(B ′ ∪M(A))

5 return largest matching using edges M ∪ML ∪MR

B A B A
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5 return largest matching using edges M ∪ML ∪MR

B A B A

Input graph G = (A,B,E ) with perfect matching M∗
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Three Round Query Algorithm for Bipartite Graphs

Algorithm (input graph G = (A,B,E ))

1 M ← query(A ∪ B)

2 ML ← query(M(A) ∪M(B))

3 B ′ ⊆ B(M)← endpoints of path of length two in M ∪ML

4 MR ← query(B ′ ∪M(A))

5 return largest matching using edges M ∪ML ∪MR

B A B A

Matching MR

Lidiya Khalidah binti Khalil and Christian Konrad Large Matchings via a Maximal Matching Oracle 11 / 17



Three Round Query Algorithm for Bipartite Graphs

Algorithm (input graph G = (A,B,E ))

1 M ← query(A ∪ B)

2 ML ← query(M(A) ∪M(B))

3 B ′ ⊆ B(M)← endpoints of path of length two in M ∪ML

4 MR ← query(B ′ ∪M(A))

5 return largest matching using edges M ∪ML ∪MR

B A B A

Largest matching in M ∪ML ∪MR (M augmented with ML ∪MR)
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Three Round Query Algorithm for Bipartite Graphs (2)

Analysis:

3
5 -approximation algorithm [Kale and Tirodkar, ’17]

Worst-case Example:

B A B A

ML M MR = ∅

1 M ← query(A ∪ B)

2 ML ← query(M(A) ∪M(B))

3 B ′ ⊆ B(M)← endpoints of path of length two in M ∪ML

4 MR ← query(B ′ ∪M(A))
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ML M MR = ∅
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Lower Bound Construction - First Query

Strategy: Bound “knowledge” about input graph after each query
(“structure graph”); ensure perfect matching can be added

First Query:

Oracle commits to structure below and returns subset of edges M
(no edges between Aout and Bout)

A perfect matching (blue edges) can be added, which implies that
approximation factor is 3/5 at best after first query

Bout

b4

Ain

a1

Bin

b1

a2 b2

Aout

a4

b5 a3 b3
a5

M

Bout

b4

Ain

a1

Bin

b1

a2 b2

Aout

a4

b5 a3 b3
a5

M
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Lower Bound Construction - Second Query

Second Query:

Information can be bounded by structure below - grey edges indicate
that edges are not present in output graph

Again, perfect matching can be added, which implies that
approximation factor is 3/5 at best after second query
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Lower Bound Construction - Third Query

Third Query:

Structure cannot easily be captured using a single “structure graph“

Instead, case distinctions with cleverly grouping cases together

Example Case: Query includes {b1, b2, b3}

Bout

b4

Ain

a1

Bin

b1

a2 b2

Aout

a4

b5 a3 b3
a5

Bout

b4

Ain

a1

Bin

b1

a2 b2

Aout

a4

b5 a3 b3
a5

Key Technique: Structural properties that allow eliminating cases
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Open Problems and Outlook

Open Problems:

Can we compute a Maximum Matching in o(n2) rounds?

Can we prove that Ω(1/ε2) rounds are required for computing a
(1− ε)-approximation?

Outlook:

Extensions: Edge queries instead of vertex queries

Randomization?
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Thank you for your
attention.
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