
Topics in TCS

Sparse recovery

Raphaël Clifford



MIND TWISTER/ youtube.com



Sparse recovery
We will be working in the turnstile streaming model for this lecture.

We have seen how to estimate the frequency of tokens but not how
to recover them from a sketch.

If the number of tokens with non-zero frequency is at most s then we
say the stream is s-sparse. If the number of non-zero frequency
tokens is exactly s we say the stream is strictly s-sparse.

Our goal will be an s-sparse recovery algorithm which uses space not
much larger than s.

Imagine that at some point in a stream, there is exactly one token
with non-zero frequency. How can we recover it?



Sparse recovery
We will be working in the turnstile streaming model for this lecture.

We have seen how to estimate the frequency of tokens but not how
to recover them from a sketch.

If the number of tokens with non-zero frequency is at most s then we
say the stream is s-sparse. If the number of non-zero frequency
tokens is exactly s we say the stream is strictly s-sparse.

Our goal will be an s-sparse recovery algorithm which uses space not
much larger than s.

Imagine that at some point in a stream, there is exactly one token
with non-zero frequency. How can we recover it?



Sparse recovery
We will be working in the turnstile streaming model for this lecture.

We have seen how to estimate the frequency of tokens but not how
to recover them from a sketch.

If the number of tokens with non-zero frequency is at most s then we
say the stream is s-sparse. If the number of non-zero frequency
tokens is exactly s we say the stream is strictly s-sparse.

Our goal will be an s-sparse recovery algorithm which uses space not
much larger than s.

Imagine that at some point in a stream, there is exactly one token
with non-zero frequency. How can we recover it?



Sparse recovery
We will be working in the turnstile streaming model for this lecture.

We have seen how to estimate the frequency of tokens but not how
to recover them from a sketch.

If the number of tokens with non-zero frequency is at most s then we
say the stream is s-sparse. If the number of non-zero frequency
tokens is exactly s we say the stream is strictly s-sparse.

Our goal will be an s-sparse recovery algorithm which uses space not
much larger than s.

Imagine that at some point in a stream, there is exactly one token
with non-zero frequency. How can we recover it?



Sparse recovery
We will be working in the turnstile streaming model for this lecture.

We have seen how to estimate the frequency of tokens but not how
to recover them from a sketch.

If the number of tokens with non-zero frequency is at most s then we
say the stream is s-sparse. If the number of non-zero frequency
tokens is exactly s we say the stream is strictly s-sparse.

Our goal will be an s-sparse recovery algorithm which uses space not
much larger than s.

Imagine that at some point in a stream, there is exactly one token
with non-zero frequency. How can we recover it?



1-sparse recovery - simple case
• For 1-sparse recovery, the idea is to maintain

` =
n∑

j=1
fj and z =

n∑
j=1

jfj

• ` is the sum of the frequencies of tokens in the stream and z is the
weighted sum of those frequencies.
• Both ` and z can be maintained in constant time per arriving token.
• If we know the stream is 1-sparse then the following simple

deterministic algorithm works.

1. If ` = 0 there is nothing to return.
2. Otherwise, z/` is the identity of the token with non-zero frequency.
3. We know the frequency of token z/` is `.

• If we don’t know if the stream is 1-sparse it is much harder and we
will have to use randomisation.



1-sparse recovery - simple case
• For 1-sparse recovery, the idea is to maintain

` =
n∑

j=1
fj and z =

n∑
j=1

jfj

• ` is the sum of the frequencies of tokens in the stream and z is the
weighted sum of those frequencies.

• Both ` and z can be maintained in constant time per arriving token.
• If we know the stream is 1-sparse then the following simple

deterministic algorithm works.

1. If ` = 0 there is nothing to return.
2. Otherwise, z/` is the identity of the token with non-zero frequency.
3. We know the frequency of token z/` is `.

• If we don’t know if the stream is 1-sparse it is much harder and we
will have to use randomisation.



1-sparse recovery - simple case
• For 1-sparse recovery, the idea is to maintain

` =
n∑

j=1
fj and z =

n∑
j=1

jfj

• ` is the sum of the frequencies of tokens in the stream and z is the
weighted sum of those frequencies.
• Both ` and z can be maintained in constant time per arriving token.

• If we know the stream is 1-sparse then the following simple
deterministic algorithm works.

1. If ` = 0 there is nothing to return.
2. Otherwise, z/` is the identity of the token with non-zero frequency.
3. We know the frequency of token z/` is `.

• If we don’t know if the stream is 1-sparse it is much harder and we
will have to use randomisation.



1-sparse recovery - simple case
• For 1-sparse recovery, the idea is to maintain

` =
n∑

j=1
fj and z =

n∑
j=1

jfj

• ` is the sum of the frequencies of tokens in the stream and z is the
weighted sum of those frequencies.
• Both ` and z can be maintained in constant time per arriving token.
• If we know the stream is 1-sparse then the following simple
deterministic algorithm works.

1. If ` = 0 there is nothing to return.
2. Otherwise, z/` is the identity of the token with non-zero frequency.
3. We know the frequency of token z/` is `.

• If we don’t know if the stream is 1-sparse it is much harder and we
will have to use randomisation.



1-sparse recovery - simple case
• For 1-sparse recovery, the idea is to maintain

` =
n∑

j=1
fj and z =

n∑
j=1

jfj

• ` is the sum of the frequencies of tokens in the stream and z is the
weighted sum of those frequencies.
• Both ` and z can be maintained in constant time per arriving token.
• If we know the stream is 1-sparse then the following simple
deterministic algorithm works.
1. If ` = 0 there is nothing to return.

2. Otherwise, z/` is the identity of the token with non-zero frequency.
3. We know the frequency of token z/` is `.

• If we don’t know if the stream is 1-sparse it is much harder and we
will have to use randomisation.



1-sparse recovery - simple case
• For 1-sparse recovery, the idea is to maintain

` =
n∑

j=1
fj and z =

n∑
j=1

jfj

• ` is the sum of the frequencies of tokens in the stream and z is the
weighted sum of those frequencies.
• Both ` and z can be maintained in constant time per arriving token.
• If we know the stream is 1-sparse then the following simple
deterministic algorithm works.
1. If ` = 0 there is nothing to return.
2. Otherwise, z/` is the identity of the token with non-zero frequency.

3. We know the frequency of token z/` is `.
• If we don’t know if the stream is 1-sparse it is much harder and we

will have to use randomisation.



1-sparse recovery - simple case
• For 1-sparse recovery, the idea is to maintain

` =
n∑

j=1
fj and z =

n∑
j=1

jfj

• ` is the sum of the frequencies of tokens in the stream and z is the
weighted sum of those frequencies.
• Both ` and z can be maintained in constant time per arriving token.
• If we know the stream is 1-sparse then the following simple
deterministic algorithm works.
1. If ` = 0 there is nothing to return.
2. Otherwise, z/` is the identity of the token with non-zero frequency.
3. We know the frequency of token z/` is `.

• If we don’t know if the stream is 1-sparse it is much harder and we
will have to use randomisation.



1-sparse recovery - simple case
• For 1-sparse recovery, the idea is to maintain

` =
n∑

j=1
fj and z =

n∑
j=1

jfj

• ` is the sum of the frequencies of tokens in the stream and z is the
weighted sum of those frequencies.
• Both ` and z can be maintained in constant time per arriving token.
• If we know the stream is 1-sparse then the following simple
deterministic algorithm works.
1. If ` = 0 there is nothing to return.
2. Otherwise, z/` is the identity of the token with non-zero frequency.
3. We know the frequency of token z/` is `.

• If we don’t know if the stream is 1-sparse it is much harder and we
will have to use randomisation.



1-sparse recovery preparation
• We will need a prime field Fq which we can think of as being the

integers modulo a prime q.

• For example consider F3. In this field 2 + 3 = 2, 2 · 2 = 1, 3 · 3 = 0.

• We choose a prime q such that n3 < q ≤ 2n3. This is always possible
by the Bertrand–Chebyshev theorem.

• We will use a fingerprint. This is in our case a randomised map from
a vector to a much smaller sketch.

• Sketches should have the property that if two vectors are distinct
then with high probability the sketches are distinct too. If two vectors
are equal then our sketches will always be equal.

• We will use a polynomial sketch.



1-sparse recovery preparation
• We will need a prime field Fq which we can think of as being the

integers modulo a prime q.

• For example consider F3. In this field 2 + 3 = 2, 2 · 2 = 1, 3 · 3 = 0.

• We choose a prime q such that n3 < q ≤ 2n3. This is always possible
by the Bertrand–Chebyshev theorem.

• We will use a fingerprint. This is in our case a randomised map from
a vector to a much smaller sketch.

• Sketches should have the property that if two vectors are distinct
then with high probability the sketches are distinct too. If two vectors
are equal then our sketches will always be equal.

• We will use a polynomial sketch.



1-sparse recovery preparation
• We will need a prime field Fq which we can think of as being the

integers modulo a prime q.

• For example consider F3. In this field 2 + 3 = 2, 2 · 2 = 1, 3 · 3 = 0.

• We choose a prime q such that n3 < q ≤ 2n3. This is always possible
by the Bertrand–Chebyshev theorem.

• We will use a fingerprint. This is in our case a randomised map from
a vector to a much smaller sketch.

• Sketches should have the property that if two vectors are distinct
then with high probability the sketches are distinct too. If two vectors
are equal then our sketches will always be equal.

• We will use a polynomial sketch.



1-sparse recovery preparation
• We will need a prime field Fq which we can think of as being the

integers modulo a prime q.

• For example consider F3. In this field 2 + 3 = 2, 2 · 2 = 1, 3 · 3 = 0.

• We choose a prime q such that n3 < q ≤ 2n3. This is always possible
by the Bertrand–Chebyshev theorem.

• We will use a fingerprint. This is in our case a randomised map from
a vector to a much smaller sketch.

• Sketches should have the property that if two vectors are distinct
then with high probability the sketches are distinct too. If two vectors
are equal then our sketches will always be equal.

• We will use a polynomial sketch.



1-sparse recovery preparation
• We will need a prime field Fq which we can think of as being the

integers modulo a prime q.

• For example consider F3. In this field 2 + 3 = 2, 2 · 2 = 1, 3 · 3 = 0.

• We choose a prime q such that n3 < q ≤ 2n3. This is always possible
by the Bertrand–Chebyshev theorem.

• We will use a fingerprint. This is in our case a randomised map from
a vector to a much smaller sketch.

• Sketches should have the property that if two vectors are distinct
then with high probability the sketches are distinct too. If two vectors
are equal then our sketches will always be equal.

• We will use a polynomial sketch.



1-sparse recovery preparation
• We will need a prime field Fq which we can think of as being the

integers modulo a prime q.

• For example consider F3. In this field 2 + 3 = 2, 2 · 2 = 1, 3 · 3 = 0.

• We choose a prime q such that n3 < q ≤ 2n3. This is always possible
by the Bertrand–Chebyshev theorem.

• We will use a fingerprint. This is in our case a randomised map from
a vector to a much smaller sketch.

• Sketches should have the property that if two vectors are distinct
then with high probability the sketches are distinct too. If two vectors
are equal then our sketches will always be equal.

• We will use a polynomial sketch.



The polynomial fingerprint
• We will compute ` =

∑n
j=1 fj and z =

∑n
j=1 jfj as before.

• We also compute p =
∑n

j=1 cj r j for a random r ∈ Fq. The value cj is
the possibly negative count for token j .

• If there is exactly one non-zero frequency then z/` is the identity of
the token as before and p = `r z/` as all the other coefficients will be
zero.

• Otherwise, we show that p 6= `r z/` with high probability.



The polynomial fingerprint
• We will compute ` =

∑n
j=1 fj and z =

∑n
j=1 jfj as before.

• We also compute p =
∑n

j=1 cj r j for a random r ∈ Fq. The value cj is
the possibly negative count for token j .

• If there is exactly one non-zero frequency then z/` is the identity of
the token as before and p = `r z/` as all the other coefficients will be
zero.

• Otherwise, we show that p 6= `r z/` with high probability.



The polynomial fingerprint
• We will compute ` =

∑n
j=1 fj and z =

∑n
j=1 jfj as before.

• We also compute p =
∑n

j=1 cj r j for a random r ∈ Fq. The value cj is
the possibly negative count for token j .

• If there is exactly one non-zero frequency then z/` is the identity of
the token as before and p = `r z/` as all the other coefficients will be
zero.

• Otherwise, we show that p 6= `r z/` with high probability.



The polynomial fingerprint
• We will compute ` =

∑n
j=1 fj and z =

∑n
j=1 jfj as before.

• We also compute p =
∑n

j=1 cj r j for a random r ∈ Fq. The value cj is
the possibly negative count for token j .

• If there is exactly one non-zero frequency then z/` is the identity of
the token as before and p = `r z/` as all the other coefficients will be
zero.

• Otherwise, we show that p 6= `r z/` with high probability.



1-sparse recovery algorithm
Define ei to be an all zero vector except for a 1 at index i .

initialise (`, z , p) = (0, 0, 0)
choose r to be a uniform random element of Fq

1-sparse(j , c) # token, count
set ` = `+ c
set z = z + cj
set p = p + cr j # fingerprint

Output
if ` = z = p = 0 return 0

return f = 0
else if z/` /∈ [n]

return ‖f ‖0 > 1
else if p 6= `r z/`

return ‖f ‖0 > 1
else

return f = `ez/`



1-sparse recovery - example

1-sparse(j , c)
set ` = `+ c
set z = z + cj
set p = p + cr j

• Let n = 2 and q = 11.

• Consider stream
〈(2, 3), (1,−2), (2,−2), (1, 2)〉.

• Choose a random r ∈ {0, . . . , 10}. Say
r = 5.

• ` is updated to 3, 1,−1, 1 in turn.
• z is updated to 6, 4, 0, 2 in turn.
• p is updated to 3 · 52 = 75, 75 + (−2)51 = 65,

65 + (−2)52 = 15, 15 + 2 · 51 = 25.
• In F11 the values of p are in turn: 9, 10, 4, 3.
• Now we check ` 6= 0 X

• Check z/` = 2/1 = 2 ∈ [2] X
• Check p = `r z/` = 1 · 52 = 3 mod 11. X
• Output: `ez/` = (0, 1)



1-sparse recovery - example

1-sparse(j , c)
set ` = `+ c
set z = z + cj
set p = p + cr j

• Let n = 2 and q = 11.
• Consider stream
〈(2, 3), (1,−2), (2,−2), (1, 2)〉.

• Choose a random r ∈ {0, . . . , 10}. Say
r = 5.

• ` is updated to 3, 1,−1, 1 in turn.
• z is updated to 6, 4, 0, 2 in turn.
• p is updated to 3 · 52 = 75, 75 + (−2)51 = 65,

65 + (−2)52 = 15, 15 + 2 · 51 = 25.
• In F11 the values of p are in turn: 9, 10, 4, 3.
• Now we check ` 6= 0 X

• Check z/` = 2/1 = 2 ∈ [2] X
• Check p = `r z/` = 1 · 52 = 3 mod 11. X
• Output: `ez/` = (0, 1)



1-sparse recovery - example

1-sparse(j , c)
set ` = `+ c
set z = z + cj
set p = p + cr j

• Let n = 2 and q = 11.
• Consider stream
〈(2, 3), (1,−2), (2,−2), (1, 2)〉.
• Choose a random r ∈ {0, . . . , 10}. Say
r = 5.

• ` is updated to 3, 1,−1, 1 in turn.
• z is updated to 6, 4, 0, 2 in turn.
• p is updated to 3 · 52 = 75, 75 + (−2)51 = 65,

65 + (−2)52 = 15, 15 + 2 · 51 = 25.
• In F11 the values of p are in turn: 9, 10, 4, 3.
• Now we check ` 6= 0 X

• Check z/` = 2/1 = 2 ∈ [2] X
• Check p = `r z/` = 1 · 52 = 3 mod 11. X
• Output: `ez/` = (0, 1)



1-sparse recovery - example

1-sparse(j , c)
set ` = `+ c
set z = z + cj
set p = p + cr j

• Let n = 2 and q = 11.
• Consider stream
〈(2, 3), (1,−2), (2,−2), (1, 2)〉.
• Choose a random r ∈ {0, . . . , 10}. Say
r = 5.

• ` is updated to 3, 1,−1, 1 in turn.

• z is updated to 6, 4, 0, 2 in turn.
• p is updated to 3 · 52 = 75, 75 + (−2)51 = 65,

65 + (−2)52 = 15, 15 + 2 · 51 = 25.
• In F11 the values of p are in turn: 9, 10, 4, 3.
• Now we check ` 6= 0 X

• Check z/` = 2/1 = 2 ∈ [2] X
• Check p = `r z/` = 1 · 52 = 3 mod 11. X
• Output: `ez/` = (0, 1)



1-sparse recovery - example

1-sparse(j , c)
set ` = `+ c
set z = z + cj
set p = p + cr j

• Let n = 2 and q = 11.
• Consider stream
〈(2, 3), (1,−2), (2,−2), (1, 2)〉.
• Choose a random r ∈ {0, . . . , 10}. Say
r = 5.

• ` is updated to 3, 1,−1, 1 in turn.
• z is updated to 6, 4, 0, 2 in turn.

• p is updated to 3 · 52 = 75, 75 + (−2)51 = 65,
65 + (−2)52 = 15, 15 + 2 · 51 = 25.
• In F11 the values of p are in turn: 9, 10, 4, 3.
• Now we check ` 6= 0 X

• Check z/` = 2/1 = 2 ∈ [2] X
• Check p = `r z/` = 1 · 52 = 3 mod 11. X
• Output: `ez/` = (0, 1)



1-sparse recovery - example

1-sparse(j , c)
set ` = `+ c
set z = z + cj
set p = p + cr j

• Let n = 2 and q = 11.
• Consider stream
〈(2, 3), (1,−2), (2,−2), (1, 2)〉.
• Choose a random r ∈ {0, . . . , 10}. Say
r = 5.

• ` is updated to 3, 1,−1, 1 in turn.
• z is updated to 6, 4, 0, 2 in turn.
• p is updated to 3 · 52 = 75, 75 + (−2)51 = 65,
65 + (−2)52 = 15, 15 + 2 · 51 = 25.

• In F11 the values of p are in turn: 9, 10, 4, 3.
• Now we check ` 6= 0 X

• Check z/` = 2/1 = 2 ∈ [2] X
• Check p = `r z/` = 1 · 52 = 3 mod 11. X
• Output: `ez/` = (0, 1)



1-sparse recovery - example

1-sparse(j , c)
set ` = `+ c
set z = z + cj
set p = p + cr j

• Let n = 2 and q = 11.
• Consider stream
〈(2, 3), (1,−2), (2,−2), (1, 2)〉.
• Choose a random r ∈ {0, . . . , 10}. Say
r = 5.

• ` is updated to 3, 1,−1, 1 in turn.
• z is updated to 6, 4, 0, 2 in turn.
• p is updated to 3 · 52 = 75, 75 + (−2)51 = 65,
65 + (−2)52 = 15, 15 + 2 · 51 = 25.
• In F11 the values of p are in turn: 9, 10, 4, 3.

• Now we check ` 6= 0 X

• Check z/` = 2/1 = 2 ∈ [2] X
• Check p = `r z/` = 1 · 52 = 3 mod 11. X
• Output: `ez/` = (0, 1)



1-sparse recovery - example

1-sparse(j , c)
set ` = `+ c
set z = z + cj
set p = p + cr j

• Let n = 2 and q = 11.
• Consider stream
〈(2, 3), (1,−2), (2,−2), (1, 2)〉.
• Choose a random r ∈ {0, . . . , 10}. Say
r = 5.

• ` is updated to 3, 1,−1, 1 in turn.
• z is updated to 6, 4, 0, 2 in turn.
• p is updated to 3 · 52 = 75, 75 + (−2)51 = 65,
65 + (−2)52 = 15, 15 + 2 · 51 = 25.
• In F11 the values of p are in turn: 9, 10, 4, 3.
• Now we check ` 6= 0 X

• Check z/` = 2/1 = 2 ∈ [2] X
• Check p = `r z/` = 1 · 52 = 3 mod 11. X
• Output: `ez/` = (0, 1)



1-sparse recovery - example

1-sparse(j , c)
set ` = `+ c
set z = z + cj
set p = p + cr j

• Let n = 2 and q = 11.
• Consider stream
〈(2, 3), (1,−2), (2,−2), (1, 2)〉.
• Choose a random r ∈ {0, . . . , 10}. Say
r = 5.

• ` is updated to 3, 1,−1, 1 in turn.
• z is updated to 6, 4, 0, 2 in turn.
• p is updated to 3 · 52 = 75, 75 + (−2)51 = 65,
65 + (−2)52 = 15, 15 + 2 · 51 = 25.
• In F11 the values of p are in turn: 9, 10, 4, 3.
• Now we check ` 6= 0 X

• Check z/` = 2/1 = 2 ∈ [2] X

• Check p = `r z/` = 1 · 52 = 3 mod 11. X
• Output: `ez/` = (0, 1)



1-sparse recovery - example

1-sparse(j , c)
set ` = `+ c
set z = z + cj
set p = p + cr j

• Let n = 2 and q = 11.
• Consider stream
〈(2, 3), (1,−2), (2,−2), (1, 2)〉.
• Choose a random r ∈ {0, . . . , 10}. Say
r = 5.

• ` is updated to 3, 1,−1, 1 in turn.
• z is updated to 6, 4, 0, 2 in turn.
• p is updated to 3 · 52 = 75, 75 + (−2)51 = 65,
65 + (−2)52 = 15, 15 + 2 · 51 = 25.
• In F11 the values of p are in turn: 9, 10, 4, 3.
• Now we check ` 6= 0 X

• Check z/` = 2/1 = 2 ∈ [2] X
• Check p = `r z/` = 1 · 52 = 3 mod 11. X

• Output: `ez/` = (0, 1)



1-sparse recovery - example

1-sparse(j , c)
set ` = `+ c
set z = z + cj
set p = p + cr j

• Let n = 2 and q = 11.
• Consider stream
〈(2, 3), (1,−2), (2,−2), (1, 2)〉.
• Choose a random r ∈ {0, . . . , 10}. Say
r = 5.

• ` is updated to 3, 1,−1, 1 in turn.
• z is updated to 6, 4, 0, 2 in turn.
• p is updated to 3 · 52 = 75, 75 + (−2)51 = 65,
65 + (−2)52 = 15, 15 + 2 · 51 = 25.
• In F11 the values of p are in turn: 9, 10, 4, 3.
• Now we check ` 6= 0 X

• Check z/` = 2/1 = 2 ∈ [2] X
• Check p = `r z/` = 1 · 52 = 3 mod 11. X
• Output: `ez/` = (0, 1)



1-sparse recovery - analysis
• Consider the case where f is strictly 1-sparse where i is the token

with non-zero frequency.

• In that case ` = fi , z = i` and so z/` = i ∈ [n].

• Therefore p = fi r i = `r z/` as required.

• If f = 0 then ` = z = p = 0 and so the algorithm returns 0 correctly.

• If f has exactly one non-zero frequency token then the algorithm
returns `ez/` correctly.

• No false negatives.

• What about if f is not 1-sparse? Could we get false-positives?

• Yes. It is possible that ` = z = p = 0 or z/` ∈ [n] and p = `r z/` but
the stream is not 1-sparse.

• How likely are we to get false-positives?



1-sparse recovery - analysis
• Consider the case where f is strictly 1-sparse where i is the token

with non-zero frequency.

• In that case ` = fi , z = i` and so z/` = i ∈ [n].

• Therefore p = fi r i = `r z/` as required.

• If f = 0 then ` = z = p = 0 and so the algorithm returns 0 correctly.

• If f has exactly one non-zero frequency token then the algorithm
returns `ez/` correctly.

• No false negatives.

• What about if f is not 1-sparse? Could we get false-positives?

• Yes. It is possible that ` = z = p = 0 or z/` ∈ [n] and p = `r z/` but
the stream is not 1-sparse.

• How likely are we to get false-positives?



1-sparse recovery - analysis
• Consider the case where f is strictly 1-sparse where i is the token

with non-zero frequency.

• In that case ` = fi , z = i` and so z/` = i ∈ [n].

• Therefore p = fi r i = `r z/` as required.

• If f = 0 then ` = z = p = 0 and so the algorithm returns 0 correctly.

• If f has exactly one non-zero frequency token then the algorithm
returns `ez/` correctly.

• No false negatives.

• What about if f is not 1-sparse? Could we get false-positives?

• Yes. It is possible that ` = z = p = 0 or z/` ∈ [n] and p = `r z/` but
the stream is not 1-sparse.

• How likely are we to get false-positives?



1-sparse recovery - analysis
• Consider the case where f is strictly 1-sparse where i is the token

with non-zero frequency.

• In that case ` = fi , z = i` and so z/` = i ∈ [n].

• Therefore p = fi r i = `r z/` as required.

• If f = 0 then ` = z = p = 0 and so the algorithm returns 0 correctly.

• If f has exactly one non-zero frequency token then the algorithm
returns `ez/` correctly.

• No false negatives.

• What about if f is not 1-sparse? Could we get false-positives?

• Yes. It is possible that ` = z = p = 0 or z/` ∈ [n] and p = `r z/` but
the stream is not 1-sparse.

• How likely are we to get false-positives?



1-sparse recovery - analysis
• Consider the case where f is strictly 1-sparse where i is the token

with non-zero frequency.

• In that case ` = fi , z = i` and so z/` = i ∈ [n].

• Therefore p = fi r i = `r z/` as required.

• If f = 0 then ` = z = p = 0 and so the algorithm returns 0 correctly.

• If f has exactly one non-zero frequency token then the algorithm
returns `ez/` correctly.

• No false negatives.

• What about if f is not 1-sparse? Could we get false-positives?

• Yes. It is possible that ` = z = p = 0 or z/` ∈ [n] and p = `r z/` but
the stream is not 1-sparse.

• How likely are we to get false-positives?



1-sparse recovery - analysis
• Consider the case where f is strictly 1-sparse where i is the token

with non-zero frequency.

• In that case ` = fi , z = i` and so z/` = i ∈ [n].

• Therefore p = fi r i = `r z/` as required.

• If f = 0 then ` = z = p = 0 and so the algorithm returns 0 correctly.

• If f has exactly one non-zero frequency token then the algorithm
returns `ez/` correctly.

• No false negatives.

• What about if f is not 1-sparse? Could we get false-positives?

• Yes. It is possible that ` = z = p = 0 or z/` ∈ [n] and p = `r z/` but
the stream is not 1-sparse.

• How likely are we to get false-positives?



1-sparse recovery - analysis
• Consider the case where f is strictly 1-sparse where i is the token

with non-zero frequency.

• In that case ` = fi , z = i` and so z/` = i ∈ [n].

• Therefore p = fi r i = `r z/` as required.

• If f = 0 then ` = z = p = 0 and so the algorithm returns 0 correctly.

• If f has exactly one non-zero frequency token then the algorithm
returns `ez/` correctly.

• No false negatives.

• What about if f is not 1-sparse? Could we get false-positives?

• Yes. It is possible that ` = z = p = 0 or z/` ∈ [n] and p = `r z/` but
the stream is not 1-sparse.

• How likely are we to get false-positives?



1-sparse recovery - analysis
• Consider the case where f is strictly 1-sparse where i is the token

with non-zero frequency.

• In that case ` = fi , z = i` and so z/` = i ∈ [n].

• Therefore p = fi r i = `r z/` as required.

• If f = 0 then ` = z = p = 0 and so the algorithm returns 0 correctly.

• If f has exactly one non-zero frequency token then the algorithm
returns `ez/` correctly.

• No false negatives.

• What about if f is not 1-sparse? Could we get false-positives?

• Yes. It is possible that ` = z = p = 0 or z/` ∈ [n] and p = `r z/` but
the stream is not 1-sparse.

• How likely are we to get false-positives?



1-sparse recovery - analysis
• Consider the case where f is strictly 1-sparse where i is the token

with non-zero frequency.

• In that case ` = fi , z = i` and so z/` = i ∈ [n].

• Therefore p = fi r i = `r z/` as required.

• If f = 0 then ` = z = p = 0 and so the algorithm returns 0 correctly.

• If f has exactly one non-zero frequency token then the algorithm
returns `ez/` correctly.

• No false negatives.

• What about if f is not 1-sparse? Could we get false-positives?

• Yes. It is possible that ` = z = p = 0 or z/` ∈ [n] and p = `r z/` but
the stream is not 1-sparse.

• How likely are we to get false-positives?



1-sparse recovery - how likely are false positives?
Number of roots of a polynomial
Over any field, a nonzero polynomial of degree d has at most d roots

• We have that p =
∑n

j=1 fj r j = q(r) where q(r) is a polynomial over
the finite field Fq.
• If the stream is not 1-sparse then we know that a false positive can

only occur when ` = z = p = 0 or z/` ∈ [n] and p = `r z/`.
• To handle both these cases at once, define

i =
{
0, if ` = z = 0 or z/` /∈ [n]
z/`, otherwise

• Now we have that a false positive occurs only when r is a root of the
polynomial q(x)− `x i .
• But q(x)− `x z/` has degree at most n and hence at most n roots

and so

Pr(r is a root of q(x)− `x z/`) ≤ n
|Fq|
∈ O

( 1
n2

)



1-sparse recovery - how likely are false positives?
Number of roots of a polynomial
Over any field, a nonzero polynomial of degree d has at most d roots

• We have that p =
∑n

j=1 fj r j = q(r) where q(r) is a polynomial over
the finite field Fq.

• If the stream is not 1-sparse then we know that a false positive can
only occur when ` = z = p = 0 or z/` ∈ [n] and p = `r z/`.
• To handle both these cases at once, define

i =
{
0, if ` = z = 0 or z/` /∈ [n]
z/`, otherwise

• Now we have that a false positive occurs only when r is a root of the
polynomial q(x)− `x i .
• But q(x)− `x z/` has degree at most n and hence at most n roots

and so

Pr(r is a root of q(x)− `x z/`) ≤ n
|Fq|
∈ O

( 1
n2

)



1-sparse recovery - how likely are false positives?
Number of roots of a polynomial
Over any field, a nonzero polynomial of degree d has at most d roots

• We have that p =
∑n

j=1 fj r j = q(r) where q(r) is a polynomial over
the finite field Fq.
• If the stream is not 1-sparse then we know that a false positive can
only occur when ` = z = p = 0 or z/` ∈ [n] and p = `r z/`.

• To handle both these cases at once, define

i =
{
0, if ` = z = 0 or z/` /∈ [n]
z/`, otherwise

• Now we have that a false positive occurs only when r is a root of the
polynomial q(x)− `x i .
• But q(x)− `x z/` has degree at most n and hence at most n roots

and so

Pr(r is a root of q(x)− `x z/`) ≤ n
|Fq|
∈ O

( 1
n2

)



1-sparse recovery - how likely are false positives?
Number of roots of a polynomial
Over any field, a nonzero polynomial of degree d has at most d roots

• We have that p =
∑n

j=1 fj r j = q(r) where q(r) is a polynomial over
the finite field Fq.
• If the stream is not 1-sparse then we know that a false positive can
only occur when ` = z = p = 0 or z/` ∈ [n] and p = `r z/`.
• To handle both these cases at once, define

i =
{
0, if ` = z = 0 or z/` /∈ [n]
z/`, otherwise

• Now we have that a false positive occurs only when r is a root of the
polynomial q(x)− `x i .
• But q(x)− `x z/` has degree at most n and hence at most n roots

and so

Pr(r is a root of q(x)− `x z/`) ≤ n
|Fq|
∈ O

( 1
n2

)



1-sparse recovery - how likely are false positives?
Number of roots of a polynomial
Over any field, a nonzero polynomial of degree d has at most d roots

• We have that p =
∑n

j=1 fj r j = q(r) where q(r) is a polynomial over
the finite field Fq.
• If the stream is not 1-sparse then we know that a false positive can
only occur when ` = z = p = 0 or z/` ∈ [n] and p = `r z/`.
• To handle both these cases at once, define

i =
{
0, if ` = z = 0 or z/` /∈ [n]
z/`, otherwise

• Now we have that a false positive occurs only when r is a root of the
polynomial q(x)− `x i .

• But q(x)− `x z/` has degree at most n and hence at most n roots
and so

Pr(r is a root of q(x)− `x z/`) ≤ n
|Fq|
∈ O

( 1
n2

)



1-sparse recovery - how likely are false positives?
Number of roots of a polynomial
Over any field, a nonzero polynomial of degree d has at most d roots

• We have that p =
∑n

j=1 fj r j = q(r) where q(r) is a polynomial over
the finite field Fq.
• If the stream is not 1-sparse then we know that a false positive can
only occur when ` = z = p = 0 or z/` ∈ [n] and p = `r z/`.
• To handle both these cases at once, define

i =
{
0, if ` = z = 0 or z/` /∈ [n]
z/`, otherwise

• Now we have that a false positive occurs only when r is a root of the
polynomial q(x)− `x i .
• But q(x)− `x z/` has degree at most n and hence at most n roots
and so

Pr(r is a root of q(x)− `x z/`) ≤ n
|Fq|
∈ O

( 1
n2

)



1-sparse recovery - summary and time/space
• The 1-sparse algorithm always gives the correct answer for a 1-sparse
stream.

• We get a false positive if the stream is not 1-sparse and either
` = z = p = 0 or z/` ∈ [n] and p = `r z/`. This occurs with
probability at most O(1/n2).

• Each (j , c) pair is processed in constant time so the total running
time is O(m).

• If M is the largest frequency of any item, the total space is
O(log n + logM) bits. This is because |`| ≤ nM and |z | ≤ n2M and
p, r ∈ Fq with q ≤ 2n3.



1-sparse recovery - summary and time/space
• The 1-sparse algorithm always gives the correct answer for a 1-sparse
stream.

• We get a false positive if the stream is not 1-sparse and either
` = z = p = 0 or z/` ∈ [n] and p = `r z/`. This occurs with
probability at most O(1/n2).

• Each (j , c) pair is processed in constant time so the total running
time is O(m).

• If M is the largest frequency of any item, the total space is
O(log n + logM) bits. This is because |`| ≤ nM and |z | ≤ n2M and
p, r ∈ Fq with q ≤ 2n3.



1-sparse recovery - summary and time/space
• The 1-sparse algorithm always gives the correct answer for a 1-sparse
stream.

• We get a false positive if the stream is not 1-sparse and either
` = z = p = 0 or z/` ∈ [n] and p = `r z/`. This occurs with
probability at most O(1/n2).

• Each (j , c) pair is processed in constant time so the total running
time is O(m).

• If M is the largest frequency of any item, the total space is
O(log n + logM) bits. This is because |`| ≤ nM and |z | ≤ n2M and
p, r ∈ Fq with q ≤ 2n3.



1-sparse recovery - summary and time/space
• The 1-sparse algorithm always gives the correct answer for a 1-sparse
stream.

• We get a false positive if the stream is not 1-sparse and either
` = z = p = 0 or z/` ∈ [n] and p = `r z/`. This occurs with
probability at most O(1/n2).

• Each (j , c) pair is processed in constant time so the total running
time is O(m).

• If M is the largest frequency of any item, the total space is
O(log n + logM) bits. This is because |`| ≤ nM and |z | ≤ n2M and
p, r ∈ Fq with q ≤ 2n3.



s-sparse recovery
• Let s � n. We want to recover all the tokens with non-zero
frequency provided there at most s of them and or report that there
are too many otherwise.

• The overall idea is to randomly map the tokens into 2s streams.

• If the stream is s-sparse there will be a good chance that individual
streams will be 1-sparse.

• We run our 1-sparse detection and recovery algorithm on each stream.

• We repeat the whole process to decrease the error probability.



s-sparse recovery
• Let s � n. We want to recover all the tokens with non-zero
frequency provided there at most s of them and or report that there
are too many otherwise.

• The overall idea is to randomly map the tokens into 2s streams.

• If the stream is s-sparse there will be a good chance that individual
streams will be 1-sparse.

• We run our 1-sparse detection and recovery algorithm on each stream.

• We repeat the whole process to decrease the error probability.



s-sparse recovery
• Let s � n. We want to recover all the tokens with non-zero
frequency provided there at most s of them and or report that there
are too many otherwise.

• The overall idea is to randomly map the tokens into 2s streams.

• If the stream is s-sparse there will be a good chance that individual
streams will be 1-sparse.

• We run our 1-sparse detection and recovery algorithm on each stream.

• We repeat the whole process to decrease the error probability.



s-sparse recovery
• Let s � n. We want to recover all the tokens with non-zero
frequency provided there at most s of them and or report that there
are too many otherwise.

• The overall idea is to randomly map the tokens into 2s streams.

• If the stream is s-sparse there will be a good chance that individual
streams will be 1-sparse.

• We run our 1-sparse detection and recovery algorithm on each stream.

• We repeat the whole process to decrease the error probability.



s-sparse recovery
• Let s � n. We want to recover all the tokens with non-zero
frequency provided there at most s of them and or report that there
are too many otherwise.

• The overall idea is to randomly map the tokens into 2s streams.

• If the stream is s-sparse there will be a good chance that individual
streams will be 1-sparse.

• We run our 1-sparse detection and recovery algorithm on each stream.

• We repeat the whole process to decrease the error probability.



Throwing s balls in 2s bins
What happens when you throw s balls into 2s bins?

Attempt 1:



Throwing s balls in 2s bins
What happens when you throw s balls into 2s bins?

Attempt 2:



Throwing s balls in 2s bins
What happens when you throw s balls into 2s bins?

Attempt 3:



Throwing s balls in 2s bins
What happens when you throw s balls into 2s bins?

Attempt 4:



Throwing s balls in 2s bins
What happens when you throw s balls into 2s bins?

Attempt 5:



Throwing s balls in 2s bins
What happens when you throw s balls into 2s bins?

Attempt 6:



Throwing s balls in 2s bins
What happens when you throw s balls into 2s bins?

Attempt 7:



Throwing s balls in 2s bins
What happens when you throw s balls into 2s bins?

Attempt 8:



Throwing s balls in 2s bins
What happens when you throw s balls into 2s bins?

Attempt 9:



Throwing s balls in 2s bins
What happens when you throw s balls into 2s bins?

Attempt 10:



s-sparse recovery

initialise t = dlog(s/δ)e
initialise D[1 . . . t][1 . . . 2s] = 0
choose t independent hash functions h1, . . . , ht : [n]→ [2s]

s-sparse(j , c) # c can be negative
for each i ∈ [t]

update D[i , hi(j)] with token, count pair (j , c)

• update runs one step of the 1-sparse recovery and detection
algorithm with the new incoming token pair.

• The token j can be mapped to any of the 2s columns of D. Each
column represents a different substream.

• D[i , j] stores the variables and result for an instance of the 1-sparse
recovery and detection algorithm.

• The t rows of D are for the t independent hash functions.



s-sparse recovery

initialise t = dlog(s/δ)e
initialise D[1 . . . t][1 . . . 2s] = 0
choose t independent hash functions h1, . . . , ht : [n]→ [2s]

s-sparse(j , c) # c can be negative
for each i ∈ [t]

update D[i , hi(j)] with token, count pair (j , c)

• update runs one step of the 1-sparse recovery and detection
algorithm with the new incoming token pair.

• The token j can be mapped to any of the 2s columns of D. Each
column represents a different substream.

• D[i , j] stores the variables and result for an instance of the 1-sparse
recovery and detection algorithm.

• The t rows of D are for the t independent hash functions.



s-sparse recovery

initialise t = dlog(s/δ)e
initialise D[1 . . . t][1 . . . 2s] = 0
choose t independent hash functions h1, . . . , ht : [n]→ [2s]

s-sparse(j , c) # c can be negative
for each i ∈ [t]

update D[i , hi(j)] with token, count pair (j , c)

• update runs one step of the 1-sparse recovery and detection
algorithm with the new incoming token pair.

• The token j can be mapped to any of the 2s columns of D. Each
column represents a different substream.

• D[i , j] stores the variables and result for an instance of the 1-sparse
recovery and detection algorithm.

• The t rows of D are for the t independent hash functions.



s-sparse recovery

initialise t = dlog(s/δ)e
initialise D[1 . . . t][1 . . . 2s] = 0
choose t independent hash functions h1, . . . , ht : [n]→ [2s]

s-sparse(j , c) # c can be negative
for each i ∈ [t]

update D[i , hi(j)] with token, count pair (j , c)

• update runs one step of the 1-sparse recovery and detection
algorithm with the new incoming token pair.

• The token j can be mapped to any of the 2s columns of D. Each
column represents a different substream.

• D[i , j] stores the variables and result for an instance of the 1-sparse
recovery and detection algorithm.

• The t rows of D are for the t independent hash functions.



s-sparse recovery - output

initialise t = dlog(s/δ)e
initialise D[1 . . . t][1 . . . 2s] = 0
choose t independent hash functions h1, . . . , ht : [n]→ [2s]

s-sparse(j , c) # c can be negative
for each i ∈ [t]

update D[i , hi(j)] with pair (j , c)

For the final output we take the following steps:

• For each i ∈ [t], k ∈ [2s]

• if D[i , k] reports success then store the imputed token/index if it isn’t
contradicted by a previously stored index for that stream.

• if the total number of tokens/indices stored is greater than s, then
abort.

• Output all frequency/token pairs inferred from the stored information.



s-sparse recovery - output

initialise t = dlog(s/δ)e
initialise D[1 . . . t][1 . . . 2s] = 0
choose t independent hash functions h1, . . . , ht : [n]→ [2s]

s-sparse(j , c) # c can be negative
for each i ∈ [t]

update D[i , hi(j)] with pair (j , c)

For the final output we take the following steps:

• For each i ∈ [t], k ∈ [2s]
• if D[i , k] reports success then store the imputed token/index if it isn’t

contradicted by a previously stored index for that stream.

• if the total number of tokens/indices stored is greater than s, then
abort.

• Output all frequency/token pairs inferred from the stored information.



s-sparse recovery - output

initialise t = dlog(s/δ)e
initialise D[1 . . . t][1 . . . 2s] = 0
choose t independent hash functions h1, . . . , ht : [n]→ [2s]

s-sparse(j , c) # c can be negative
for each i ∈ [t]

update D[i , hi(j)] with pair (j , c)

For the final output we take the following steps:

• For each i ∈ [t], k ∈ [2s]
• if D[i , k] reports success then store the imputed token/index if it isn’t

contradicted by a previously stored index for that stream.
• if the total number of tokens/indices stored is greater than s, then

abort.

• Output all frequency/token pairs inferred from the stored information.



s-sparse recovery - output

initialise t = dlog(s/δ)e
initialise D[1 . . . t][1 . . . 2s] = 0
choose t independent hash functions h1, . . . , ht : [n]→ [2s]

s-sparse(j , c) # c can be negative
for each i ∈ [t]

update D[i , hi(j)] with pair (j , c)

For the final output we take the following steps:

• For each i ∈ [t], k ∈ [2s]
• if D[i , k] reports success then store the imputed token/index if it isn’t

contradicted by a previously stored index for that stream.
• if the total number of tokens/indices stored is greater than s, then

abort.

• Output all frequency/token pairs inferred from the stored information.



s-sparse recovery - analysis
• The s-sparse algorithm correctly outputs f if both of the following

happens:

[SR1] Every j ∈ supp f is in at least one strictly 1-sparse substream.
[SR2] None of the 2st entries in D give a false positive.

Proof for SR1. Consider a particular item j ∈ supp f . For each i ∈ [t],
let σi(j) be the substream generated by hi containing elements of the
form (j , c). Note that fj 6= 0 necessarily for this stream.
Pr(σi(j) is not 1-sparse) = Pr(∃j ′ ∈ supp f : j ′ 6= j ∧ hi(j ′) = hi(j))

≤
∑

j′∈supp f
j 6=j′

Pr(hi(j ′) = hi(j))

≤
∑

j′∈supp f
j 6=j′

1
2s ≤

1
2

Pr(SR1 fails for item j) =
∏t

i=1 Pr(σi(j) is not 1-sparse) ≤
(

1
2

)t
≤ δ

s



s-sparse recovery - analysis
• The s-sparse algorithm correctly outputs f if both of the following

happens:

[SR1] Every j ∈ supp f is in at least one strictly 1-sparse substream.

[SR2] None of the 2st entries in D give a false positive.

Proof for SR1. Consider a particular item j ∈ supp f . For each i ∈ [t],
let σi(j) be the substream generated by hi containing elements of the
form (j , c). Note that fj 6= 0 necessarily for this stream.
Pr(σi(j) is not 1-sparse) = Pr(∃j ′ ∈ supp f : j ′ 6= j ∧ hi(j ′) = hi(j))

≤
∑

j′∈supp f
j 6=j′

Pr(hi(j ′) = hi(j))

≤
∑

j′∈supp f
j 6=j′

1
2s ≤

1
2

Pr(SR1 fails for item j) =
∏t

i=1 Pr(σi(j) is not 1-sparse) ≤
(

1
2

)t
≤ δ

s



s-sparse recovery - analysis
• The s-sparse algorithm correctly outputs f if both of the following

happens:

[SR1] Every j ∈ supp f is in at least one strictly 1-sparse substream.
[SR2] None of the 2st entries in D give a false positive.

Proof for SR1. Consider a particular item j ∈ supp f . For each i ∈ [t],
let σi(j) be the substream generated by hi containing elements of the
form (j , c). Note that fj 6= 0 necessarily for this stream.
Pr(σi(j) is not 1-sparse) = Pr(∃j ′ ∈ supp f : j ′ 6= j ∧ hi(j ′) = hi(j))

≤
∑

j′∈supp f
j 6=j′

Pr(hi(j ′) = hi(j))

≤
∑

j′∈supp f
j 6=j′

1
2s ≤

1
2

Pr(SR1 fails for item j) =
∏t

i=1 Pr(σi(j) is not 1-sparse) ≤
(

1
2

)t
≤ δ

s



s-sparse recovery - analysis
• The s-sparse algorithm correctly outputs f if both of the following

happens:

[SR1] Every j ∈ supp f is in at least one strictly 1-sparse substream.
[SR2] None of the 2st entries in D give a false positive.

Proof for SR1. Consider a particular item j ∈ supp f . For each i ∈ [t],
let σi(j) be the substream generated by hi containing elements of the
form (j , c). Note that fj 6= 0 necessarily for this stream.
Pr(σi(j) is not 1-sparse) = Pr(∃j ′ ∈ supp f : j ′ 6= j ∧ hi(j ′) = hi(j))

≤
∑

j′∈supp f
j 6=j′

Pr(hi(j ′) = hi(j))

≤
∑

j′∈supp f
j 6=j′

1
2s ≤

1
2

Pr(SR1 fails for item j) =
∏t

i=1 Pr(σi(j) is not 1-sparse) ≤
(

1
2

)t
≤ δ

s



s-sparse recovery - analysis
• The s-sparse algorithm correctly outputs f if both of the following

happens:

[SR1] Every j ∈ supp f is in at least one strictly 1-sparse substream.
[SR2] None of the 2st entries in D give a false positive.

Proof for SR1. Consider a particular item j ∈ supp f . For each i ∈ [t],
let σi(j) be the substream generated by hi containing elements of the
form (j , c). Note that fj 6= 0 necessarily for this stream.

Pr(σi(j) is not 1-sparse) = Pr(∃j ′ ∈ supp f : j ′ 6= j ∧ hi(j ′) = hi(j))
≤

∑
j′∈supp f

j 6=j′

Pr(hi(j ′) = hi(j))

≤
∑

j′∈supp f
j 6=j′

1
2s ≤

1
2

Pr(SR1 fails for item j) =
∏t

i=1 Pr(σi(j) is not 1-sparse) ≤
(

1
2

)t
≤ δ

s



s-sparse recovery - analysis
• The s-sparse algorithm correctly outputs f if both of the following

happens:

[SR1] Every j ∈ supp f is in at least one strictly 1-sparse substream.
[SR2] None of the 2st entries in D give a false positive.

Proof for SR1. Consider a particular item j ∈ supp f . For each i ∈ [t],
let σi(j) be the substream generated by hi containing elements of the
form (j , c). Note that fj 6= 0 necessarily for this stream.
Pr(σi(j) is not 1-sparse) = Pr(∃j ′ ∈ supp f : j ′ 6= j ∧ hi(j ′) = hi(j))

≤
∑

j′∈supp f
j 6=j′

Pr(hi(j ′) = hi(j))

≤
∑

j′∈supp f
j 6=j′

1
2s ≤

1
2

Pr(SR1 fails for item j) =
∏t

i=1 Pr(σi(j) is not 1-sparse) ≤
(

1
2

)t
≤ δ

s



s-sparse recovery - analysis
• The s-sparse algorithm correctly outputs f if both of the following

happens:

[SR1] Every j ∈ supp f is in at least one strictly 1-sparse substream.
[SR2] None of the 2st entries in D give a false positive.

Proof for SR1. Consider a particular item j ∈ supp f . For each i ∈ [t],
let σi(j) be the substream generated by hi containing elements of the
form (j , c). Note that fj 6= 0 necessarily for this stream.
Pr(σi(j) is not 1-sparse) = Pr(∃j ′ ∈ supp f : j ′ 6= j ∧ hi(j ′) = hi(j))

≤
∑

j′∈supp f
j 6=j′

Pr(hi(j ′) = hi(j))

≤
∑

j′∈supp f
j 6=j′

1
2s ≤

1
2

Pr(SR1 fails for item j) =
∏t

i=1 Pr(σi(j) is not 1-sparse) ≤
(

1
2

)t
≤ δ

s



End of s-sparse proof
[SR1] Every j ∈ supp f is in at least one strictly 1-sparse substream.
[SR2] None of the 2st entries in D give a false positive.
• We have that Pr(SR1 fails for item j) ≤ δ

s .

• By a union bound over tokens in supp f ,

Pr(SR1 fails for any item) ≤ |supp f | · δs ≤ δ.

• By another union bound over the entries of D,

Pr(SR2 fails) ≤ 2st · O
( 1
n2

)
∈ o(1),

because st ≤ n. By yet another union bound the probability that the
recovery fails is at most δ + o(1).



End of s-sparse proof
[SR1] Every j ∈ supp f is in at least one strictly 1-sparse substream.
[SR2] None of the 2st entries in D give a false positive.
• We have that Pr(SR1 fails for item j) ≤ δ

s .
• By a union bound over tokens in supp f ,

Pr(SR1 fails for any item) ≤ |supp f | · δs ≤ δ.

• By another union bound over the entries of D,

Pr(SR2 fails) ≤ 2st · O
( 1
n2

)
∈ o(1),

because st ≤ n. By yet another union bound the probability that the
recovery fails is at most δ + o(1).



End of s-sparse proof
[SR1] Every j ∈ supp f is in at least one strictly 1-sparse substream.
[SR2] None of the 2st entries in D give a false positive.
• We have that Pr(SR1 fails for item j) ≤ δ

s .
• By a union bound over tokens in supp f ,

Pr(SR1 fails for any item) ≤ |supp f | · δs ≤ δ.

• By another union bound over the entries of D,

Pr(SR2 fails) ≤ 2st · O
( 1
n2

)
∈ o(1),

because st ≤ n. By yet another union bound the probability that the
recovery fails is at most δ + o(1).



s-sparse recovery - Summary
• The s-sparse recovery algorithm errs with probability of error at most
δ + o(1).

• The overall space used is O(st(log n + logM) bits. This equals
O(s(log s + log δ−1)(log n + logM)) bits.

• The running time is O(t) = O(log s + log δ−1) per arriving token and
O(tk) = O(s(log s + log δ−1)) time to report the results.

• How can we check if the stream really was s-sparse?



s-sparse recovery - Summary
• The s-sparse recovery algorithm errs with probability of error at most
δ + o(1).

• The overall space used is O(st(log n + logM) bits. This equals
O(s(log s + log δ−1)(log n + logM)) bits.

• The running time is O(t) = O(log s + log δ−1) per arriving token and
O(tk) = O(s(log s + log δ−1)) time to report the results.

• How can we check if the stream really was s-sparse?



s-sparse recovery - Summary
• The s-sparse recovery algorithm errs with probability of error at most
δ + o(1).

• The overall space used is O(st(log n + logM) bits. This equals
O(s(log s + log δ−1)(log n + logM)) bits.

• The running time is O(t) = O(log s + log δ−1) per arriving token and
O(tk) = O(s(log s + log δ−1)) time to report the results.

• How can we check if the stream really was s-sparse?



s-sparse recovery - Summary
• The s-sparse recovery algorithm errs with probability of error at most
δ + o(1).

• The overall space used is O(st(log n + logM) bits. This equals
O(s(log s + log δ−1)(log n + logM)) bits.

• The running time is O(t) = O(log s + log δ−1) per arriving token and
O(tk) = O(s(log s + log δ−1)) time to report the results.

• How can we check if the stream really was s-sparse?


