
Topics in TCS

Frequency estimation via sketching

Raphaël Clifford

Frequent items via sketching
We return to the problem of finding frequent items. Our previous
definition was: Given a parameter k, find the set of symbols with
frequency greater than m/k.

The Misra-Gries algorithm is one-pass and runs in
O(k(log m + log n)) bits of space and O(m log n) time.

It is deterministic (goodX) but only works in the cash register
model.

We will change the definition to ask for an estimate of the frequency
of occurrence for any token queried.

We will introduce our first randomised sketching algorithms.

Our sketches will be linear which will mean we can extend them to
the turnstile model. We can also combine them easily by adding.

They will give us an estimate of the frequency for every token.

Frequent items via sketching
We return to the problem of finding frequent items. Our previous
definition was: Given a parameter k, find the set of symbols with
frequency greater than m/k.
The Misra-Gries algorithm is one-pass and runs in
O(k(log m + log n)) bits of space and O(m log n) time.

It is deterministic (goodX) but only works in the cash register
model.

We will change the definition to ask for an estimate of the frequency
of occurrence for any token queried.

We will introduce our first randomised sketching algorithms.

Our sketches will be linear which will mean we can extend them to
the turnstile model. We can also combine them easily by adding.

They will give us an estimate of the frequency for every token.

Frequent items via sketching
We return to the problem of finding frequent items. Our previous
definition was: Given a parameter k, find the set of symbols with
frequency greater than m/k.
The Misra-Gries algorithm is one-pass and runs in
O(k(log m + log n)) bits of space and O(m log n) time.

It is deterministic (goodX) but only works in the cash register
model.

We will change the definition to ask for an estimate of the frequency
of occurrence for any token queried.

We will introduce our first randomised sketching algorithms.

Our sketches will be linear which will mean we can extend them to
the turnstile model. We can also combine them easily by adding.

They will give us an estimate of the frequency for every token.

Frequent items via sketching
We return to the problem of finding frequent items. Our previous
definition was: Given a parameter k, find the set of symbols with
frequency greater than m/k.
The Misra-Gries algorithm is one-pass and runs in
O(k(log m + log n)) bits of space and O(m log n) time.

It is deterministic (goodX) but only works in the cash register
model.

We will change the definition to ask for an estimate of the frequency
of occurrence for any token queried.

We will introduce our first randomised sketching algorithms.

Our sketches will be linear which will mean we can extend them to
the turnstile model. We can also combine them easily by adding.

They will give us an estimate of the frequency for every token.

Frequent items via sketching
We return to the problem of finding frequent items. Our previous
definition was: Given a parameter k, find the set of symbols with
frequency greater than m/k.
The Misra-Gries algorithm is one-pass and runs in
O(k(log m + log n)) bits of space and O(m log n) time.

It is deterministic (goodX) but only works in the cash register
model.

We will change the definition to ask for an estimate of the frequency
of occurrence for any token queried.

We will introduce our first randomised sketching algorithms.

Our sketches will be linear which will mean we can extend them to
the turnstile model. We can also combine them easily by adding.

They will give us an estimate of the frequency for every token.

Frequent items via sketching
We return to the problem of finding frequent items. Our previous
definition was: Given a parameter k, find the set of symbols with
frequency greater than m/k.
The Misra-Gries algorithm is one-pass and runs in
O(k(log m + log n)) bits of space and O(m log n) time.

It is deterministic (goodX) but only works in the cash register
model.

We will change the definition to ask for an estimate of the frequency
of occurrence for any token queried.

We will introduce our first randomised sketching algorithms.

Our sketches will be linear which will mean we can extend them to
the turnstile model. We can also combine them easily by adding.

They will give us an estimate of the frequency for every token.

Frequent items via sketching
We return to the problem of finding frequent items. Our previous
definition was: Given a parameter k, find the set of symbols with
frequency greater than m/k.
The Misra-Gries algorithm is one-pass and runs in
O(k(log m + log n)) bits of space and O(m log n) time.

It is deterministic (goodX) but only works in the cash register
model.

We will change the definition to ask for an estimate of the frequency
of occurrence for any token queried.

We will introduce our first randomised sketching algorithms.

Our sketches will be linear which will mean we can extend them to
the turnstile model. We can also combine them easily by adding.

They will give us an estimate of the frequency for every token.

CountSketch
The sketch is a 2D-array C with t rows and k columns. All hash
functions are chosen from a pairwise independent family.

stream 〈a1, . . . , am〉,ai ∈ [n]
initialise C [1 . . . t][1 . . . k] = 0
choose hash functions h1, . . . ht : [n]→ [k]
choose hash function g1, . . . , gt : [n]→ {−1, 1}

CountSketch(ai)
for each j ∈ [t]

C [j , hj(ai)] += cigj(ai)

return f̂ai = median{gj(ai)C [j , hj(ai)]}

ci is the number of instances of ai . In the turnstile model this can be
either positive of negative.

CountSketch
The sketch is a 2D-array C with t rows and k columns. All hash
functions are chosen from a pairwise independent family.

stream 〈a1, . . . , am〉,ai ∈ [n]
initialise C [1 . . . t][1 . . . k] = 0
choose hash functions h1, . . . ht : [n]→ [k]
choose hash function g1, . . . , gt : [n]→ {−1, 1}

CountSketch(ai)
for each j ∈ [t]

C [j , hj(ai)] += cigj(ai)

return f̂ai = median{gj(ai)C [j , hj(ai)]}

ci is the number of instances of ai . In the turnstile model this can be
either positive of negative.

CountSketch - worked example

1 2 3

h1

h2

h1, g1 h2, g2

2,+ 1,+
3,− 2,+
1,+ 3,−
2,− 3,+

return f̂ai = median{gj(ai)C [j , hj(ai)]}
f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(1 · 3, 1 · 5)
f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(−1 · −3, 1 · 3)
f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(1 · 2,−1 · 0)
f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(−1 · 3, 1 · 0)

CountSketch(ai)
for each j ∈ [t]

C [j , hj(ai)] += cigj(ai)

CountSketch - worked example

1 2 3

h1

+

h2

+

h1, g1 h2, g2

2,+ 1,+
3,− 2,+
1,+ 3,−
2,− 3,+

return f̂ai = median{gj(ai)C [j , hj(ai)]}
f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(1 · 3, 1 · 5)
f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(−1 · −3, 1 · 3)
f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(1 · 2,−1 · 0)
f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(−1 · 3, 1 · 0)

CountSketch(ai)
for each j ∈ [t]

C [j , hj(ai)] += cigj(ai)

CountSketch - worked example

1 2 3

h1

+ −

h2

+ +

h1, g1 h2, g2

2,+ 1,+
3,− 2,+
1,+ 3,−
2,− 3,+

return f̂ai = median{gj(ai)C [j , hj(ai)]}
f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(1 · 3, 1 · 5)
f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(−1 · −3, 1 · 3)
f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(1 · 2,−1 · 0)
f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(−1 · 3, 1 · 0)

CountSketch(ai)
for each j ∈ [t]

C [j , hj(ai)] += cigj(ai)

CountSketch - worked example

1 2 3

h1

++ −

h2

++ +

h1, g1 h2, g2

2,+ 1,+
3,− 2,+
1,+ 3,−
2,− 3,+

return f̂ai = median{gj(ai)C [j , hj(ai)]}
f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(1 · 3, 1 · 5)
f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(−1 · −3, 1 · 3)
f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(1 · 2,−1 · 0)
f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(−1 · 3, 1 · 0)

CountSketch(ai)
for each j ∈ [t]

C [j , hj(ai)] += cigj(ai)

CountSketch - worked example

1 2 3

h1

++− −

h2

++ + +

h1, g1 h2, g2

2,+ 1,+
3,− 2,+
1,+ 3,−
2,− 3,+

return f̂ai = median{gj(ai)C [j , hj(ai)]}
f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(1 · 3, 1 · 5)
f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(−1 · −3, 1 · 3)
f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(1 · 2,−1 · 0)
f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(−1 · 3, 1 · 0)

CountSketch(ai)
for each j ∈ [t]

C [j , hj(ai)] += cigj(ai)

CountSketch - worked example

1 2 3

h1

++−+ −

h2

+++ + +

h1, g1 h2, g2

2,+ 1,+
3,− 2,+
1,+ 3,−
2,− 3,+

return f̂ai = median{gj(ai)C [j , hj(ai)]}
f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(1 · 3, 1 · 5)
f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(−1 · −3, 1 · 3)
f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(1 · 2,−1 · 0)
f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(−1 · 3, 1 · 0)

CountSketch(ai)
for each j ∈ [t]

C [j , hj(ai)] += cigj(ai)

CountSketch - worked example

1 2 3

h1

++−+ −−

h2

+++ ++ +

h1, g1 h2, g2

2,+ 1,+
3,− 2,+
1,+ 3,−
2,− 3,+

return f̂ai = median{gj(ai)C [j , hj(ai)]}
f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(1 · 3, 1 · 5)
f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(−1 · −3, 1 · 3)
f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(1 · 2,−1 · 0)
f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(−1 · 3, 1 · 0)

CountSketch(ai)
for each j ∈ [t]

C [j , hj(ai)] += cigj(ai)

CountSketch - worked example

1 2 3

h1

+ ++−+ −−

h2

+++ ++ +−

h1, g1 h2, g2

2,+ 1,+
3,− 2,+
1,+ 3,−
2,− 3,+

return f̂ai = median{gj(ai)C [j , hj(ai)]}
f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(1 · 3, 1 · 5)
f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(−1 · −3, 1 · 3)
f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(1 · 2,−1 · 0)
f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(−1 · 3, 1 · 0)

CountSketch(ai)
for each j ∈ [t]

C [j , hj(ai)] += cigj(ai)

CountSketch - worked example

1 2 3

h1

+ ++−++ −−

h2

++++ ++ +−

h1, g1 h2, g2

2,+ 1,+
3,− 2,+
1,+ 3,−
2,− 3,+

return f̂ai = median{gj(ai)C [j , hj(ai)]}
f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(1 · 3, 1 · 5)
f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(−1 · −3, 1 · 3)
f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(1 · 2,−1 · 0)
f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(−1 · 3, 1 · 0)

CountSketch(ai)
for each j ∈ [t]

C [j , hj(ai)] += cigj(ai)

CountSketch - worked example

1 2 3

h1

+ ++−++
+

−−

h2

+++++ ++ +−

h1, g1 h2, g2

2,+ 1,+
3,− 2,+
1,+ 3,−
2,− 3,+

return f̂ai = median{gj(ai)C [j , hj(ai)]}
f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(1 · 3, 1 · 5)
f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(−1 · −3, 1 · 3)
f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(1 · 2,−1 · 0)
f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(−1 · 3, 1 · 0)

CountSketch(ai)
for each j ∈ [t]

C [j , hj(ai)] += cigj(ai)

CountSketch - worked example

1 2 3

h1

+ ++−++
+

−−−

h2

+++++ +++ +−

h1, g1 h2, g2

2,+ 1,+
3,− 2,+
1,+ 3,−
2,− 3,+

return f̂ai = median{gj(ai)C [j , hj(ai)]}
f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(1 · 3, 1 · 5)
f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(−1 · −3, 1 · 3)
f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(1 · 2,−1 · 0)
f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(−1 · 3, 1 · 0)

CountSketch(ai)
for each j ∈ [t]

C [j , hj(ai)] += cigj(ai)

CountSketch - worked example

1 2 3

h1

++ ++−++
+

−−−

h2

+++++ +++ +−−

h1, g1 h2, g2

2,+ 1,+
3,− 2,+
1,+ 3,−
2,− 3,+

return f̂ai = median{gj(ai)C [j , hj(ai)]}
f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(1 · 3, 1 · 5)
f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(−1 · −3, 1 · 3)
f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(1 · 2,−1 · 0)
f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(−1 · 3, 1 · 0)

CountSketch(ai)
for each j ∈ [t]

C [j , hj(ai)] += cigj(ai)

CountSketch - worked example

1 2 3

h1

++ ++−++
+−

−−−

h2

+++++ +++ +−−+

h1, g1 h2, g2

2,+ 1,+
3,− 2,+
1,+ 3,−
2,− 3,+

return f̂ai = median{gj(ai)C [j , hj(ai)]}
f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(1 · 3, 1 · 5)
f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(−1 · −3, 1 · 3)
f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(1 · 2,−1 · 0)
f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(−1 · 3, 1 · 0)

CountSketch(ai)
for each j ∈ [t]

C [j , hj(ai)] += cigj(ai)

CountSketch - worked example

1 2 3

h1

++ ++−++
+−

−−−

h2

+++++ +++ +−−+

h1, g1 h2, g2

2,+ 1,+
3,− 2,+
1,+ 3,−
2,− 3,+

return f̂ai = median{gj(ai)C [j , hj(ai)]}

f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(1 · 3, 1 · 5)
f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(−1 · −3, 1 · 3)
f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(1 · 2,−1 · 0)
f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(−1 · 3, 1 · 0)

CountSketch(ai)
for each j ∈ [t]

C [j , hj(ai)] += cigj(ai)

CountSketch - worked example

1 2 3

h1

++ ++−++
+−

−−−

h2

+++++ +++ +−−+

h1, g1 h2, g2

2,+ 1,+
3,− 2,+
1,+ 3,−
2,− 3,+

return f̂ai = median{gj(ai)C [j , hj(ai)]}
f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(1 · 3, 1 · 5)

f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(−1 · −3, 1 · 3)
f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(1 · 2,−1 · 0)
f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(−1 · 3, 1 · 0)

CountSketch(ai)
for each j ∈ [t]

C [j , hj(ai)] += cigj(ai)

CountSketch - worked example

1 2 3

h1

++ ++−++
+−

−−−

h2

+++++ +++ +−−+

h1, g1 h2, g2

2,+ 1,+
3,− 2,+
1,+ 3,−
2,− 3,+

return f̂ai = median{gj(ai)C [j , hj(ai)]}
f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(1 · 3, 1 · 5)
f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(−1 · −3, 1 · 3)

f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(1 · 2,−1 · 0)
f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(−1 · 3, 1 · 0)

CountSketch(ai)
for each j ∈ [t]

C [j , hj(ai)] += cigj(ai)

CountSketch - worked example

1 2 3

h1

++ ++−++
+−

−−−

h2

+++++ +++ +−−+

h1, g1 h2, g2

2,+ 1,+
3,− 2,+
1,+ 3,−
2,− 3,+

return f̂ai = median{gj(ai)C [j , hj(ai)]}
f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(1 · 3, 1 · 5)
f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(−1 · −3, 1 · 3)
f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(1 · 2,−1 · 0)

f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(−1 · 3, 1 · 0)

CountSketch(ai)
for each j ∈ [t]

C [j , hj(ai)] += cigj(ai)

CountSketch - worked example

1 2 3

h1

++ ++−++
+−

−−−

h2

+++++ +++ +−−+

h1, g1 h2, g2

2,+ 1,+
3,− 2,+
1,+ 3,−
2,− 3,+

return f̂ai = median{gj(ai)C [j , hj(ai)]}
f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(1 · 3, 1 · 5)
f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(−1 · −3, 1 · 3)
f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(1 · 2,−1 · 0)
f̂ = median(g1()C [1, h1()], g2()C [2, h2()]) = median(−1 · 3, 1 · 0)

CountSketch(ai)
for each j ∈ [t]

C [j , hj(ai)] += cigj(ai)

CountSketch - Analysis I
To start, let us look just at an arbitrary row of C . We will show that
for each row CountSketch gives an unbiased estimate. Define
C [x] = C [1, x].

Let X = f̂a be the output for query a.
For each token j , define indicator r.v. Yj = 1 iff h(j) = h(a).
Token j contributes fj · g(j) to C [h(a)] iff h(j) = h(a).
Therefore

X = g(a)
n∑

j=1
fjg(j)Yj = fa +

∑
j∈[n]\{a}

fjg(a)g(j)Yj

As g and h are independent and g is from a pairwise independent
family,

E[g(a)g(j)Yj] = E(g(a)) · E(g(j)) · E(Yj) = 0 · 0 · E(Yj) = 0
By linearity of expectation

E(X) = fa +
∑

j∈[n]\{a}
fjE[g(a)g(j)Yj] = fa

CountSketch - Analysis I
To start, let us look just at an arbitrary row of C . We will show that
for each row CountSketch gives an unbiased estimate. Define
C [x] = C [1, x].
Let X = f̂a be the output for query a.

For each token j , define indicator r.v. Yj = 1 iff h(j) = h(a).
Token j contributes fj · g(j) to C [h(a)] iff h(j) = h(a).
Therefore

X = g(a)
n∑

j=1
fjg(j)Yj = fa +

∑
j∈[n]\{a}

fjg(a)g(j)Yj

As g and h are independent and g is from a pairwise independent
family,

E[g(a)g(j)Yj] = E(g(a)) · E(g(j)) · E(Yj) = 0 · 0 · E(Yj) = 0
By linearity of expectation

E(X) = fa +
∑

j∈[n]\{a}
fjE[g(a)g(j)Yj] = fa

CountSketch - Analysis I
To start, let us look just at an arbitrary row of C . We will show that
for each row CountSketch gives an unbiased estimate. Define
C [x] = C [1, x].
Let X = f̂a be the output for query a.
For each token j , define indicator r.v. Yj = 1 iff h(j) = h(a).

Token j contributes fj · g(j) to C [h(a)] iff h(j) = h(a).
Therefore

X = g(a)
n∑

j=1
fjg(j)Yj = fa +

∑
j∈[n]\{a}

fjg(a)g(j)Yj

As g and h are independent and g is from a pairwise independent
family,

E[g(a)g(j)Yj] = E(g(a)) · E(g(j)) · E(Yj) = 0 · 0 · E(Yj) = 0
By linearity of expectation

E(X) = fa +
∑

j∈[n]\{a}
fjE[g(a)g(j)Yj] = fa

CountSketch - Analysis I
To start, let us look just at an arbitrary row of C . We will show that
for each row CountSketch gives an unbiased estimate. Define
C [x] = C [1, x].
Let X = f̂a be the output for query a.
For each token j , define indicator r.v. Yj = 1 iff h(j) = h(a).
Token j contributes fj · g(j) to C [h(a)] iff h(j) = h(a).

Therefore

X = g(a)
n∑

j=1
fjg(j)Yj = fa +

∑
j∈[n]\{a}

fjg(a)g(j)Yj

As g and h are independent and g is from a pairwise independent
family,

E[g(a)g(j)Yj] = E(g(a)) · E(g(j)) · E(Yj) = 0 · 0 · E(Yj) = 0
By linearity of expectation

E(X) = fa +
∑

j∈[n]\{a}
fjE[g(a)g(j)Yj] = fa

CountSketch - Analysis I
To start, let us look just at an arbitrary row of C . We will show that
for each row CountSketch gives an unbiased estimate. Define
C [x] = C [1, x].
Let X = f̂a be the output for query a.
For each token j , define indicator r.v. Yj = 1 iff h(j) = h(a).
Token j contributes fj · g(j) to C [h(a)] iff h(j) = h(a).
Therefore

X = g(a)
n∑

j=1
fjg(j)Yj = fa +

∑
j∈[n]\{a}

fjg(a)g(j)Yj

As g and h are independent and g is from a pairwise independent
family,

E[g(a)g(j)Yj] = E(g(a)) · E(g(j)) · E(Yj) = 0 · 0 · E(Yj) = 0
By linearity of expectation

E(X) = fa +
∑

j∈[n]\{a}
fjE[g(a)g(j)Yj] = fa

CountSketch - Analysis I
To start, let us look just at an arbitrary row of C . We will show that
for each row CountSketch gives an unbiased estimate. Define
C [x] = C [1, x].
Let X = f̂a be the output for query a.
For each token j , define indicator r.v. Yj = 1 iff h(j) = h(a).
Token j contributes fj · g(j) to C [h(a)] iff h(j) = h(a).
Therefore

X = g(a)
n∑

j=1
fjg(j)Yj = fa +

∑
j∈[n]\{a}

fjg(a)g(j)Yj

As g and h are independent and g is from a pairwise independent
family,

E[g(a)g(j)Yj] = E(g(a)) · E(g(j)) · E(Yj) = 0 · 0 · E(Yj) = 0

By linearity of expectation
E(X) = fa +

∑
j∈[n]\{a}

fjE[g(a)g(j)Yj] = fa

CountSketch - Analysis I
To start, let us look just at an arbitrary row of C . We will show that
for each row CountSketch gives an unbiased estimate. Define
C [x] = C [1, x].
Let X = f̂a be the output for query a.
For each token j , define indicator r.v. Yj = 1 iff h(j) = h(a).
Token j contributes fj · g(j) to C [h(a)] iff h(j) = h(a).
Therefore

X = g(a)
n∑

j=1
fjg(j)Yj = fa +

∑
j∈[n]\{a}

fjg(a)g(j)Yj

As g and h are independent and g is from a pairwise independent
family,

E[g(a)g(j)Yj] = E(g(a)) · E(g(j)) · E(Yj) = 0 · 0 · E(Yj) = 0
By linearity of expectation

E(X) = fa +
∑

j∈[n]\{a}
fjE[g(a)g(j)Yj] = fa

CountSketch - Analysis IIa
We will now derive the variance of our estimator X = f̂ . Recall
Yj = 1 iff h(j) = h(a).

var(X) = 0 + var

g(a)
∑

j∈[n]\{a}
fj · g(j)Yj



= E

g(a)2∑
j∈[n]\{a}

f 2
j Y 2

j +
∑

j∈[n]\{a}
i 6=j

fi fjg(i)g(j)YiYj

−
 ∑

j∈[n]\{a}
fjE[g(a)g(j)Yj]

2

We will need two facts to simplify these terms.

CountSketch - Analysis IIa
We will now derive the variance of our estimator X = f̂ . Recall
Yj = 1 iff h(j) = h(a).

var(X) = 0 + var

g(a)
∑

j∈[n]\{a}
fj · g(j)Yj



= E

g(a)2∑
j∈[n]\{a}

f 2
j Y 2

j +
∑

j∈[n]\{a}
i 6=j

fi fjg(i)g(j)YiYj

−
 ∑

j∈[n]\{a}
fjE[g(a)g(j)Yj]

2

We will need two facts to simplify these terms.

CountSketch - Analysis IIa
We will now derive the variance of our estimator X = f̂ . Recall
Yj = 1 iff h(j) = h(a).

var(X) = 0 + var

g(a)
∑

j∈[n]\{a}
fj · g(j)Yj



= E

g(a)2∑
j∈[n]\{a}

f 2
j Y 2

j +
∑

j∈[n]\{a}
i 6=j

fi fjg(i)g(j)YiYj

−
 ∑

j∈[n]\{a}
fjE[g(a)g(j)Yj]

2

We will need two facts to simplify these terms.

CountSketch - Analysis IIa
We will now derive the variance of our estimator X = f̂ . Recall
Yj = 1 iff h(j) = h(a).

var(X) = 0 + var

g(a)
∑

j∈[n]\{a}
fj · g(j)Yj



= E

g(a)2∑
j∈[n]\{a}

f 2
j Y 2

j +
∑

j∈[n]\{a}
i 6=j

fi fjg(i)g(j)YiYj

−
 ∑

j∈[n]\{a}
fjE[g(a)g(j)Yj]

2

We will need two facts to simplify these terms.

CountSketch - Analysis IIb

var(X) = E

g(a)2
∑

j∈[n]\{a}
f 2
j Y 2

j +
∑

j∈[n]\{a}
i 6=j

fi fjg(i)g(j)YiYj

−
 ∑

j∈[n]\{a}
fjE[g(a)g(j)Yj]

2

Now, the two facts:
1. E(Y 2

j) = E(Yj) = Pr(h(j) = h(a)) = 1
k .

2. E(g(i)g(j)YiYj) = E(g(i)) ·E(g(j)) ·E(YiYj) = 0 ·0 ·E(YiYj) = 0
Therefore,

var(X) =
∑

j∈[n]\{a}

f 2
j
k + 0− 0

= ‖f ‖
2
2 − f 2

a
k where f is the array of frequencies

CountSketch - Analysis IIb

var(X) = E

g(a)2
∑

j∈[n]\{a}
f 2
j Y 2

j +
∑

j∈[n]\{a}
i 6=j

fi fjg(i)g(j)YiYj

−
 ∑

j∈[n]\{a}
fjE[g(a)g(j)Yj]

2

Now, the two facts:
1. E(Y 2

j) = E(Yj) = Pr(h(j) = h(a)) = 1
k .

2. E(g(i)g(j)YiYj) = E(g(i)) ·E(g(j)) ·E(YiYj) = 0 ·0 ·E(YiYj) = 0

Therefore,

var(X) =
∑

j∈[n]\{a}

f 2
j
k + 0− 0

= ‖f ‖
2
2 − f 2

a
k where f is the array of frequencies

CountSketch - Analysis IIb

var(X) = E

g(a)2
∑

j∈[n]\{a}
f 2
j Y 2

j +
∑

j∈[n]\{a}
i 6=j

fi fjg(i)g(j)YiYj

−
 ∑

j∈[n]\{a}
fjE[g(a)g(j)Yj]

2

Now, the two facts:
1. E(Y 2

j) = E(Yj) = Pr(h(j) = h(a)) = 1
k .

2. E(g(i)g(j)YiYj) = E(g(i)) ·E(g(j)) ·E(YiYj) = 0 ·0 ·E(YiYj) = 0
Therefore,

var(X) =
∑

j∈[n]\{a}

f 2
j
k + 0− 0

= ‖f ‖
2
2 − f 2

a
k where f is the array of frequencies

CountSketch - Analysis IIb

var(X) = E

g(a)2
∑

j∈[n]\{a}
f 2
j Y 2

j +
∑

j∈[n]\{a}
i 6=j

fi fjg(i)g(j)YiYj

−
 ∑

j∈[n]\{a}
fjE[g(a)g(j)Yj]

2

Now, the two facts:
1. E(Y 2

j) = E(Yj) = Pr(h(j) = h(a)) = 1
k .

2. E(g(i)g(j)YiYj) = E(g(i)) ·E(g(j)) ·E(YiYj) = 0 ·0 ·E(YiYj) = 0
Therefore,

var(X) =
∑

j∈[n]\{a}

f 2
j
k + 0− 0

= ‖f ‖
2
2 − f 2

a
k where f is the array of frequencies

CountSketch - Analysis III
Using the variance var(X) = ‖f ‖2

2−f 2
a

k we can apply Chebyshev.

Pr(|f̂a − fa| ≥ ε
√
‖f ‖22 − f 2

a) = Pr(|X − E(X)| ≥ ε
√
‖f ‖22 − f 2

a)

≤ var(X)
ε2(‖f ‖22 − f 2

a)

= 1
kε2

= 1
3 (set k = 3/ε2)

Using the notation f−j for f with the jth element dropped,
‖f−j‖22 = ‖f ‖22 − f 2

j . And so,

Pr(|f̂a − fa| ≥ ε ‖f−a‖2) ≤ 1
3

CountSketch - Analysis III
Using the variance var(X) = ‖f ‖2

2−f 2
a

k we can apply Chebyshev.

Pr(|f̂a − fa| ≥ ε
√
‖f ‖22 − f 2

a) = Pr(|X − E(X)| ≥ ε
√
‖f ‖22 − f 2

a)

≤ var(X)
ε2(‖f ‖22 − f 2

a)

= 1
kε2

= 1
3 (set k = 3/ε2)

Using the notation f−j for f with the jth element dropped,
‖f−j‖22 = ‖f ‖22 − f 2

j . And so,

Pr(|f̂a − fa| ≥ ε ‖f−a‖2) ≤ 1
3

CountSketch - Analysis III
Using the variance var(X) = ‖f ‖2

2−f 2
a

k we can apply Chebyshev.

Pr(|f̂a − fa| ≥ ε
√
‖f ‖22 − f 2

a) = Pr(|X − E(X)| ≥ ε
√
‖f ‖22 − f 2

a)

≤ var(X)
ε2(‖f ‖22 − f 2

a)

= 1
kε2

= 1
3 (set k = 3/ε2)

Using the notation f−j for f with the jth element dropped,
‖f−j‖22 = ‖f ‖22 − f 2

j .

And so,

Pr(|f̂a − fa| ≥ ε ‖f−a‖2) ≤ 1
3

CountSketch - Analysis III
Using the variance var(X) = ‖f ‖2

2−f 2
a

k we can apply Chebyshev.

Pr(|f̂a − fa| ≥ ε
√
‖f ‖22 − f 2

a) = Pr(|X − E(X)| ≥ ε
√
‖f ‖22 − f 2

a)

≤ var(X)
ε2(‖f ‖22 − f 2

a)

= 1
kε2

= 1
3 (set k = 3/ε2)

Using the notation f−j for f with the jth element dropped,
‖f−j‖22 = ‖f ‖22 − f 2

j . And so,

Pr(|f̂a − fa| ≥ ε ‖f−a‖2) ≤ 1
3

CountSketch - Analysis IV
So how good is our sketch that takes the median?

We take the median of |f̂a − fa| for t different independent runs. If
this is at least ε ‖f−a‖2 then at least t/2 iterations are that big.

We show that this is exponentially unlikely to happen as a function of
the number of iterations, t.

For the ith iteration, let Zi = 1 if |f̂a − fa| ≥ ε ‖f−a‖2 and 0 otherwise.

Using Chernoff’s bound with µ = t/3

Pr
(t∑

i=1
Zi ≥ (1 + δ)µ

)
≤ exp(−δ2µ/3) = exp(−δ2t/9)

Pr
(t∑

i=1
Zi ≥ (1 + 1/2)µ

)
≤ exp(−(1/2)2t/9) = exp(−t/36)

For an arbitrary token a, the probability of being further than
ε ‖f−a‖2 from the correct frequency is at most exp(−t/36).

CountSketch - Analysis IV
So how good is our sketch that takes the median?
We take the median of |f̂a − fa| for t different independent runs. If
this is at least ε ‖f−a‖2 then at least t/2 iterations are that big.

We show that this is exponentially unlikely to happen as a function of
the number of iterations, t.

For the ith iteration, let Zi = 1 if |f̂a − fa| ≥ ε ‖f−a‖2 and 0 otherwise.

Using Chernoff’s bound with µ = t/3

Pr
(t∑

i=1
Zi ≥ (1 + δ)µ

)
≤ exp(−δ2µ/3) = exp(−δ2t/9)

Pr
(t∑

i=1
Zi ≥ (1 + 1/2)µ

)
≤ exp(−(1/2)2t/9) = exp(−t/36)

For an arbitrary token a, the probability of being further than
ε ‖f−a‖2 from the correct frequency is at most exp(−t/36).

CountSketch - Analysis IV
So how good is our sketch that takes the median?
We take the median of |f̂a − fa| for t different independent runs. If
this is at least ε ‖f−a‖2 then at least t/2 iterations are that big.

We show that this is exponentially unlikely to happen as a function of
the number of iterations, t.

For the ith iteration, let Zi = 1 if |f̂a − fa| ≥ ε ‖f−a‖2 and 0 otherwise.

Using Chernoff’s bound with µ = t/3

Pr
(t∑

i=1
Zi ≥ (1 + δ)µ

)
≤ exp(−δ2µ/3) = exp(−δ2t/9)

Pr
(t∑

i=1
Zi ≥ (1 + 1/2)µ

)
≤ exp(−(1/2)2t/9) = exp(−t/36)

For an arbitrary token a, the probability of being further than
ε ‖f−a‖2 from the correct frequency is at most exp(−t/36).

CountSketch - Analysis IV
So how good is our sketch that takes the median?
We take the median of |f̂a − fa| for t different independent runs. If
this is at least ε ‖f−a‖2 then at least t/2 iterations are that big.

We show that this is exponentially unlikely to happen as a function of
the number of iterations, t.

For the ith iteration, let Zi = 1 if |f̂a − fa| ≥ ε ‖f−a‖2 and 0 otherwise.

Using Chernoff’s bound with µ = t/3

Pr
(t∑

i=1
Zi ≥ (1 + δ)µ

)
≤ exp(−δ2µ/3) = exp(−δ2t/9)

Pr
(t∑

i=1
Zi ≥ (1 + 1/2)µ

)
≤ exp(−(1/2)2t/9) = exp(−t/36)

For an arbitrary token a, the probability of being further than
ε ‖f−a‖2 from the correct frequency is at most exp(−t/36).

CountSketch - Analysis IV
So how good is our sketch that takes the median?
We take the median of |f̂a − fa| for t different independent runs. If
this is at least ε ‖f−a‖2 then at least t/2 iterations are that big.

We show that this is exponentially unlikely to happen as a function of
the number of iterations, t.

For the ith iteration, let Zi = 1 if |f̂a − fa| ≥ ε ‖f−a‖2 and 0 otherwise.

Using Chernoff’s bound with µ = t/3

Pr
(t∑

i=1
Zi ≥ (1 + δ)µ

)
≤ exp(−δ2µ/3) = exp(−δ2t/9)

Pr
(t∑

i=1
Zi ≥ (1 + 1/2)µ

)
≤ exp(−(1/2)2t/9) = exp(−t/36)

For an arbitrary token a, the probability of being further than
ε ‖f−a‖2 from the correct frequency is at most exp(−t/36).

CountSketch - Analysis IV
So how good is our sketch that takes the median?
We take the median of |f̂a − fa| for t different independent runs. If
this is at least ε ‖f−a‖2 then at least t/2 iterations are that big.

We show that this is exponentially unlikely to happen as a function of
the number of iterations, t.

For the ith iteration, let Zi = 1 if |f̂a − fa| ≥ ε ‖f−a‖2 and 0 otherwise.

Using Chernoff’s bound with µ = t/3

Pr
(t∑

i=1
Zi ≥ (1 + δ)µ

)
≤ exp(−δ2µ/3) = exp(−δ2t/9)

Pr
(t∑

i=1
Zi ≥ (1 + 1/2)µ

)
≤ exp(−(1/2)2t/9) = exp(−t/36)

For an arbitrary token a, the probability of being further than
ε ‖f−a‖2 from the correct frequency is at most exp(−t/36).

CountSketch - Space/Time
We need O(log m) bits per counter in our sketch. There are tk
counters.

We store t pairwise independent hash functions making O(t log n)
bits.

Overall space is therefore O(t log n + tk log m) bits.

With k = d3/ε2e and t = dln 1/δe, this equals

O
(1
ε2

log 1
δ
· (log m + log n)

)
bits

Running time: one-pass and O(t) time per token.

CountSketch - Space/Time
We need O(log m) bits per counter in our sketch. There are tk
counters.

We store t pairwise independent hash functions making O(t log n)
bits.

Overall space is therefore O(t log n + tk log m) bits.

With k = d3/ε2e and t = dln 1/δe, this equals

O
(1
ε2

log 1
δ
· (log m + log n)

)
bits

Running time: one-pass and O(t) time per token.

CountSketch - Space/Time
We need O(log m) bits per counter in our sketch. There are tk
counters.

We store t pairwise independent hash functions making O(t log n)
bits.

Overall space is therefore O(t log n + tk log m) bits.

With k = d3/ε2e and t = dln 1/δe, this equals

O
(1
ε2

log 1
δ
· (log m + log n)

)
bits

Running time: one-pass and O(t) time per token.

CountSketch - Space/Time
We need O(log m) bits per counter in our sketch. There are tk
counters.

We store t pairwise independent hash functions making O(t log n)
bits.

Overall space is therefore O(t log n + tk log m) bits.

With k = d3/ε2e and t = dln 1/δe, this equals

O
(1
ε2

log 1
δ
· (log m + log n)

)
bits

Running time: one-pass and O(t) time per token.

CountSketch - Space/Time
We need O(log m) bits per counter in our sketch. There are tk
counters.

We store t pairwise independent hash functions making O(t log n)
bits.

Overall space is therefore O(t log n + tk log m) bits.

With k = d3/ε2e and t = dln 1/δe, this equals

O
(1
ε2

log 1
δ
· (log m + log n)

)
bits

Running time: one-pass and O(t) time per token.

CountSketch summary

CountSketch is a one-pass randomised algorithm to estimate the
frequency of the tokens in a stream.

Once ε and δ are decided we can set t and k accordingly.

The running time is O(t) time per token.

The space usage is O(t log n + tk log m) bits.

Assuming we set k = 3/ε2, for an arbitrary token a, the probability
that CountSketch’s estimate is further than ε ‖f−a‖2 from the
correct frequency is at most exp(−t/36).

CountSketch summary

CountSketch is a one-pass randomised algorithm to estimate the
frequency of the tokens in a stream.

Once ε and δ are decided we can set t and k accordingly.

The running time is O(t) time per token.

The space usage is O(t log n + tk log m) bits.

Assuming we set k = 3/ε2, for an arbitrary token a, the probability
that CountSketch’s estimate is further than ε ‖f−a‖2 from the
correct frequency is at most exp(−t/36).

CountSketch summary

CountSketch is a one-pass randomised algorithm to estimate the
frequency of the tokens in a stream.

Once ε and δ are decided we can set t and k accordingly.

The running time is O(t) time per token.

The space usage is O(t log n + tk log m) bits.

Assuming we set k = 3/ε2, for an arbitrary token a, the probability
that CountSketch’s estimate is further than ε ‖f−a‖2 from the
correct frequency is at most exp(−t/36).

CountSketch summary

CountSketch is a one-pass randomised algorithm to estimate the
frequency of the tokens in a stream.

Once ε and δ are decided we can set t and k accordingly.

The running time is O(t) time per token.

The space usage is O(t log n + tk log m) bits.

Assuming we set k = 3/ε2, for an arbitrary token a, the probability
that CountSketch’s estimate is further than ε ‖f−a‖2 from the
correct frequency is at most exp(−t/36).

CountSketch summary

CountSketch is a one-pass randomised algorithm to estimate the
frequency of the tokens in a stream.

Once ε and δ are decided we can set t and k accordingly.

The running time is O(t) time per token.

The space usage is O(t log n + tk log m) bits.

Assuming we set k = 3/ε2, for an arbitrary token a, the probability
that CountSketch’s estimate is further than ε ‖f−a‖2 from the
correct frequency is at most exp(−t/36).

Count-Min sketch
The sketch is a 2D-array C with t rows and k columns. All hash
functions are chosen from a pairwise independent family.

stream 〈a1, . . . , am〉,ai ∈ [n]
initialise C [1 . . . t][1 . . . k] = 0
choose hash functions h1, . . . ht : [n]→ [k]

Count-Min(ai)
for each j ∈ [t]

C [j , hj(ai)] += ci

return f̂a = min1≤i≤t C [i , hi(a)]

ci is the number of instances of ai . In the turnstile model this can be
either positive of negative.

Count-Min sketch
The sketch is a 2D-array C with t rows and k columns. All hash
functions are chosen from a pairwise independent family.

stream 〈a1, . . . , am〉,ai ∈ [n]
initialise C [1 . . . t][1 . . . k] = 0
choose hash functions h1, . . . ht : [n]→ [k]

Count-Min(ai)
for each j ∈ [t]

C [j , hj(ai)] += ci

return f̂a = min1≤i≤t C [i , hi(a)]

ci is the number of instances of ai . In the turnstile model this can be
either positive of negative.

Count-Min - worked example

1 2 3

h1

h2

h3

h1 h2 h3

1 2 3
2 1 1
1 1 1
3 3 2

Count-Min(ai)
for each j ∈ [t]

C [j , hj(ai)] += ci

f̂ = min(C [1, h1()],C [2, h2()],C [3, h3(])) = min(7, 5, 5) = 5X
f̂ = min(C [1, h1()],C [2, h2()],C [3, h3(])) = min(3, 5, 5) = 3X
f̂ = min(C [1, h1()],C [2, h2()],C [3, h3(])) = min(7, 5, 5) = 5
f̂ = min(C [1, h1()],C [2, h2()],C [3, h3(])) = min(2, 2, 2) = 2X

Count-Min - worked example

1 2 3

h1

h2

h3

h1 h2 h3

1 2 3
2 1 1
1 1 1
3 3 2

Count-Min(ai)
for each j ∈ [t]

C [j , hj(ai)] += ci

f̂ = min(C [1, h1()],C [2, h2()],C [3, h3(])) = min(7, 5, 5) = 5X
f̂ = min(C [1, h1()],C [2, h2()],C [3, h3(])) = min(3, 5, 5) = 3X
f̂ = min(C [1, h1()],C [2, h2()],C [3, h3(])) = min(7, 5, 5) = 5
f̂ = min(C [1, h1()],C [2, h2()],C [3, h3(])) = min(2, 2, 2) = 2X

Count-Min - worked example

1 2 3

h1

h2

h3

h1 h2 h3

1 2 3
2 1 1
1 1 1
3 3 2

Count-Min(ai)
for each j ∈ [t]

C [j , hj(ai)] += ci

f̂ = min(C [1, h1()],C [2, h2()],C [3, h3(])) = min(7, 5, 5) = 5X
f̂ = min(C [1, h1()],C [2, h2()],C [3, h3(])) = min(3, 5, 5) = 3X
f̂ = min(C [1, h1()],C [2, h2()],C [3, h3(])) = min(7, 5, 5) = 5
f̂ = min(C [1, h1()],C [2, h2()],C [3, h3(])) = min(2, 2, 2) = 2X

Count-Min - worked example

1 2 3

h1

h2

h3

h1 h2 h3

1 2 3
2 1 1
1 1 1
3 3 2

Count-Min(ai)
for each j ∈ [t]

C [j , hj(ai)] += ci

f̂ = min(C [1, h1()],C [2, h2()],C [3, h3(])) = min(7, 5, 5) = 5X
f̂ = min(C [1, h1()],C [2, h2()],C [3, h3(])) = min(3, 5, 5) = 3X
f̂ = min(C [1, h1()],C [2, h2()],C [3, h3(])) = min(7, 5, 5) = 5
f̂ = min(C [1, h1()],C [2, h2()],C [3, h3(])) = min(2, 2, 2) = 2X

Count-Min - worked example

1 2 3

h1

h2

h3

h1 h2 h3

1 2 3
2 1 1
1 1 1
3 3 2

Count-Min(ai)
for each j ∈ [t]

C [j , hj(ai)] += ci

f̂ = min(C [1, h1()],C [2, h2()],C [3, h3(])) = min(7, 5, 5) = 5X
f̂ = min(C [1, h1()],C [2, h2()],C [3, h3(])) = min(3, 5, 5) = 3X
f̂ = min(C [1, h1()],C [2, h2()],C [3, h3(])) = min(7, 5, 5) = 5
f̂ = min(C [1, h1()],C [2, h2()],C [3, h3(])) = min(2, 2, 2) = 2X

Count-Min - worked example

1 2 3

h1

h2

h3

h1 h2 h3

1 2 3
2 1 1
1 1 1
3 3 2

Count-Min(ai)
for each j ∈ [t]

C [j , hj(ai)] += ci

f̂ = min(C [1, h1()],C [2, h2()],C [3, h3(])) = min(7, 5, 5) = 5X
f̂ = min(C [1, h1()],C [2, h2()],C [3, h3(])) = min(3, 5, 5) = 3X
f̂ = min(C [1, h1()],C [2, h2()],C [3, h3(])) = min(7, 5, 5) = 5
f̂ = min(C [1, h1()],C [2, h2()],C [3, h3(])) = min(2, 2, 2) = 2X

Count-Min - worked example

1 2 3

h1

h2

h3

h1 h2 h3

1 2 3
2 1 1
1 1 1
3 3 2

Count-Min(ai)
for each j ∈ [t]

C [j , hj(ai)] += ci

f̂ = min(C [1, h1()],C [2, h2()],C [3, h3(])) = min(7, 5, 5) = 5X
f̂ = min(C [1, h1()],C [2, h2()],C [3, h3(])) = min(3, 5, 5) = 3X
f̂ = min(C [1, h1()],C [2, h2()],C [3, h3(])) = min(7, 5, 5) = 5
f̂ = min(C [1, h1()],C [2, h2()],C [3, h3(])) = min(2, 2, 2) = 2X

Count-Min - worked example

1 2 3

h1

h2

h3

h1 h2 h3

1 2 3
2 1 1
1 1 1
3 3 2

Count-Min(ai)
for each j ∈ [t]

C [j , hj(ai)] += ci

f̂ = min(C [1, h1()],C [2, h2()],C [3, h3(])) = min(7, 5, 5) = 5X
f̂ = min(C [1, h1()],C [2, h2()],C [3, h3(])) = min(3, 5, 5) = 3X
f̂ = min(C [1, h1()],C [2, h2()],C [3, h3(])) = min(7, 5, 5) = 5
f̂ = min(C [1, h1()],C [2, h2()],C [3, h3(])) = min(2, 2, 2) = 2X

Count-Min - worked example

1 2 3

h1

h2

h3

h1 h2 h3

1 2 3
2 1 1
1 1 1
3 3 2

Count-Min(ai)
for each j ∈ [t]

C [j , hj(ai)] += ci

f̂ = min(C [1, h1()],C [2, h2()],C [3, h3(])) = min(7, 5, 5) = 5X
f̂ = min(C [1, h1()],C [2, h2()],C [3, h3(])) = min(3, 5, 5) = 3X
f̂ = min(C [1, h1()],C [2, h2()],C [3, h3(])) = min(7, 5, 5) = 5
f̂ = min(C [1, h1()],C [2, h2()],C [3, h3(])) = min(2, 2, 2) = 2X

Count-Min - worked example

1 2 3

h1

h2

h3

h1 h2 h3

1 2 3
2 1 1
1 1 1
3 3 2

Count-Min(ai)
for each j ∈ [t]

C [j , hj(ai)] += ci

f̂ = min(C [1, h1()],C [2, h2()],C [3, h3(])) = min(7, 5, 5) = 5X
f̂ = min(C [1, h1()],C [2, h2()],C [3, h3(])) = min(3, 5, 5) = 3X
f̂ = min(C [1, h1()],C [2, h2()],C [3, h3(])) = min(7, 5, 5) = 5
f̂ = min(C [1, h1()],C [2, h2()],C [3, h3(])) = min(2, 2, 2) = 2X

Count-Min - worked example

1 2 3

h1

h2

+

h3

h1 h2 h3

1 2 3
2 1 1
1 1 1
3 3 2

Count-Min(ai)
for each j ∈ [t]

C [j , hj(ai)] += ci

f̂ = min(C [1, h1()],C [2, h2()],C [3, h3(])) = min(7, 5, 5) = 5X
f̂ = min(C [1, h1()],C [2, h2()],C [3, h3(])) = min(3, 5, 5) = 3X
f̂ = min(C [1, h1()],C [2, h2()],C [3, h3(])) = min(7, 5, 5) = 5
f̂ = min(C [1, h1()],C [2, h2()],C [3, h3(])) = min(2, 2, 2) = 2X

Count-Min - worked example

1 2 3

h1

h2

+

h3

h1 h2 h3

1 2 3
2 1 1
1 1 1
3 3 2

Count-Min(ai)
for each j ∈ [t]

C [j , hj(ai)] += ci

f̂ = min(C [1, h1()],C [2, h2()],C [3, h3(])) = min(7, 5, 5) = 5X
f̂ = min(C [1, h1()],C [2, h2()],C [3, h3(])) = min(3, 5, 5) = 3X
f̂ = min(C [1, h1()],C [2, h2()],C [3, h3(])) = min(7, 5, 5) = 5
f̂ = min(C [1, h1()],C [2, h2()],C [3, h3(])) = min(2, 2, 2) = 2X

Count-Min - worked example

1 2 3

h1

h2

+

h3

h1 h2 h3

1 2 3
2 1 1
1 1 1
3 3 2

return f̂a = min1≤i≤t C [i , hi(a)]

f̂ = min(C [1, h1()],C [2, h2()],C [3, h3(])) = min(7, 5, 5) = 5X
f̂ = min(C [1, h1()],C [2, h2()],C [3, h3(])) = min(3, 5, 5) = 3X
f̂ = min(C [1, h1()],C [2, h2()],C [3, h3(])) = min(7, 5, 5) = 5
f̂ = min(C [1, h1()],C [2, h2()],C [3, h3(])) = min(2, 2, 2) = 2X

Count-Min - worked example

1 2 3

h1

h2

+

h3

h1 h2 h3

1 2 3
2 1 1
1 1 1
3 3 2

return f̂a = min1≤i≤t C [i , hi(a)]

f̂ = min(C [1, h1()],C [2, h2()],C [3, h3(])) = min(7, 5, 5) = 5X

f̂ = min(C [1, h1()],C [2, h2()],C [3, h3(])) = min(3, 5, 5) = 3X
f̂ = min(C [1, h1()],C [2, h2()],C [3, h3(])) = min(7, 5, 5) = 5
f̂ = min(C [1, h1()],C [2, h2()],C [3, h3(])) = min(2, 2, 2) = 2X

Count-Min - worked example

1 2 3

h1

h2

+

h3

h1 h2 h3

1 2 3
2 1 1
1 1 1
3 3 2

return f̂a = min1≤i≤t C [i , hi(a)]

f̂ = min(C [1, h1()],C [2, h2()],C [3, h3(])) = min(7, 5, 5) = 5X
f̂ = min(C [1, h1()],C [2, h2()],C [3, h3(])) = min(3, 5, 5) = 3X

f̂ = min(C [1, h1()],C [2, h2()],C [3, h3(])) = min(7, 5, 5) = 5
f̂ = min(C [1, h1()],C [2, h2()],C [3, h3(])) = min(2, 2, 2) = 2X

Count-Min - worked example

1 2 3

h1

h2

+

h3

h1 h2 h3

1 2 3
2 1 1
1 1 1
3 3 2

return f̂a = min1≤i≤t C [i , hi(a)]

f̂ = min(C [1, h1()],C [2, h2()],C [3, h3(])) = min(7, 5, 5) = 5X
f̂ = min(C [1, h1()],C [2, h2()],C [3, h3(])) = min(3, 5, 5) = 3X
f̂ = min(C [1, h1()],C [2, h2()],C [3, h3(])) = min(7, 5, 5) = 5

f̂ = min(C [1, h1()],C [2, h2()],C [3, h3(])) = min(2, 2, 2) = 2X

Count-Min - worked example

1 2 3

h1

h2

+

h3

h1 h2 h3

1 2 3
2 1 1
1 1 1
3 3 2

return f̂a = min1≤i≤t C [i , hi(a)]

f̂ = min(C [1, h1()],C [2, h2()],C [3, h3(])) = min(7, 5, 5) = 5X
f̂ = min(C [1, h1()],C [2, h2()],C [3, h3(])) = min(3, 5, 5) = 3X
f̂ = min(C [1, h1()],C [2, h2()],C [3, h3(])) = min(7, 5, 5) = 5
f̂ = min(C [1, h1()],C [2, h2()],C [3, h3(])) = min(2, 2, 2) = 2X

Count-Min - Analysis I
For simplicity, consider positive counts of tokens (the cash register
model) so that f̂a ≥ fa for all tokens a.

Let Yi ,j = 1 if hi(j) = hi(a) and 0 otherwise. Note that token j
contributes to C [i , hi(a)] iff Yi ,j = 1.

Let r.v. Xi be the excess count in cell C [i , hi(a)]. That is

Xi =
∑

j∈[n]\{a}
fjYi ,j

E(Xi) =
∑

j∈[n]\{a}
fjYi ,j =

∑
j∈[n]\{a}

fj
k = ‖f ‖1 − fa

k = ‖f−a‖1
k

By Markov’s inequality

Pr(Xi ≥ ε ‖f−a‖1) ≤ ‖f−a‖1
kε ‖f−a‖1

= 1
2 set k = 2/ε

Count-Min - Analysis I
For simplicity, consider positive counts of tokens (the cash register
model) so that f̂a ≥ fa for all tokens a.
Let Yi ,j = 1 if hi(j) = hi(a) and 0 otherwise. Note that token j
contributes to C [i , hi(a)] iff Yi ,j = 1.

Let r.v. Xi be the excess count in cell C [i , hi(a)]. That is

Xi =
∑

j∈[n]\{a}
fjYi ,j

E(Xi) =
∑

j∈[n]\{a}
fjYi ,j =

∑
j∈[n]\{a}

fj
k = ‖f ‖1 − fa

k = ‖f−a‖1
k

By Markov’s inequality

Pr(Xi ≥ ε ‖f−a‖1) ≤ ‖f−a‖1
kε ‖f−a‖1

= 1
2 set k = 2/ε

Count-Min - Analysis I
For simplicity, consider positive counts of tokens (the cash register
model) so that f̂a ≥ fa for all tokens a.
Let Yi ,j = 1 if hi(j) = hi(a) and 0 otherwise. Note that token j
contributes to C [i , hi(a)] iff Yi ,j = 1.

Let r.v. Xi be the excess count in cell C [i , hi(a)]. That is

Xi =
∑

j∈[n]\{a}
fjYi ,j

E(Xi) =
∑

j∈[n]\{a}
fjYi ,j =

∑
j∈[n]\{a}

fj
k = ‖f ‖1 − fa

k = ‖f−a‖1
k

By Markov’s inequality

Pr(Xi ≥ ε ‖f−a‖1) ≤ ‖f−a‖1
kε ‖f−a‖1

= 1
2 set k = 2/ε

Count-Min - Analysis I
For simplicity, consider positive counts of tokens (the cash register
model) so that f̂a ≥ fa for all tokens a.
Let Yi ,j = 1 if hi(j) = hi(a) and 0 otherwise. Note that token j
contributes to C [i , hi(a)] iff Yi ,j = 1.

Let r.v. Xi be the excess count in cell C [i , hi(a)]. That is

Xi =
∑

j∈[n]\{a}
fjYi ,j

E(Xi) =
∑

j∈[n]\{a}
fjYi ,j =

∑
j∈[n]\{a}

fj
k = ‖f ‖1 − fa

k = ‖f−a‖1
k

By Markov’s inequality

Pr(Xi ≥ ε ‖f−a‖1) ≤ ‖f−a‖1
kε ‖f−a‖1

= 1
2 set k = 2/ε

Count-Min - Analysis I
For simplicity, consider positive counts of tokens (the cash register
model) so that f̂a ≥ fa for all tokens a.
Let Yi ,j = 1 if hi(j) = hi(a) and 0 otherwise. Note that token j
contributes to C [i , hi(a)] iff Yi ,j = 1.

Let r.v. Xi be the excess count in cell C [i , hi(a)]. That is

Xi =
∑

j∈[n]\{a}
fjYi ,j

E(Xi) =
∑

j∈[n]\{a}
fjYi ,j =

∑
j∈[n]\{a}

fj
k = ‖f ‖1 − fa

k = ‖f−a‖1
k

By Markov’s inequality

Pr(Xi ≥ ε ‖f−a‖1) ≤ ‖f−a‖1
kε ‖f−a‖1

= 1
2 set k = 2/ε

Count-Min - Analysis II
We have a bound for a single counter. Over t counters the reported
excess is the minimum over all Xi . We can now derive the probability
that all the excesses are at least ε ‖f−a‖1 directly.

Pr(f̂a − fa ≥ ε ‖f−a‖1)) ≤ 1
2t = δ set t =

⌈
log2

(1
δ

)⌉
k = 2/ε, t = dlog2(1

δ)e gives total space in bits

O
(1
ε

log 1
δ
· (log m + log n)

)
The space usage is better than CountSketch by a factor of 1/ε.
Count-Min’s error probability is bounded by ε ‖f−a‖1 instead of
ε ‖f−a‖2 for CountSketch.
For all vectors z ∈ Rn, we have that ‖z‖1 ≥ ‖z‖2.

Count-Min - Analysis II
We have a bound for a single counter. Over t counters the reported
excess is the minimum over all Xi . We can now derive the probability
that all the excesses are at least ε ‖f−a‖1 directly.

Pr(f̂a − fa ≥ ε ‖f−a‖1)) ≤ 1
2t = δ set t =

⌈
log2

(1
δ

)⌉

k = 2/ε, t = dlog2(1
δ)e gives total space in bits

O
(1
ε

log 1
δ
· (log m + log n)

)
The space usage is better than CountSketch by a factor of 1/ε.
Count-Min’s error probability is bounded by ε ‖f−a‖1 instead of
ε ‖f−a‖2 for CountSketch.
For all vectors z ∈ Rn, we have that ‖z‖1 ≥ ‖z‖2.

Count-Min - Analysis II
We have a bound for a single counter. Over t counters the reported
excess is the minimum over all Xi . We can now derive the probability
that all the excesses are at least ε ‖f−a‖1 directly.

Pr(f̂a − fa ≥ ε ‖f−a‖1)) ≤ 1
2t = δ set t =

⌈
log2

(1
δ

)⌉
k = 2/ε, t = dlog2(1

δ)e gives total space in bits

O
(1
ε

log 1
δ
· (log m + log n)

)

The space usage is better than CountSketch by a factor of 1/ε.
Count-Min’s error probability is bounded by ε ‖f−a‖1 instead of
ε ‖f−a‖2 for CountSketch.
For all vectors z ∈ Rn, we have that ‖z‖1 ≥ ‖z‖2.

Count-Min - Analysis II
We have a bound for a single counter. Over t counters the reported
excess is the minimum over all Xi . We can now derive the probability
that all the excesses are at least ε ‖f−a‖1 directly.

Pr(f̂a − fa ≥ ε ‖f−a‖1)) ≤ 1
2t = δ set t =

⌈
log2

(1
δ

)⌉
k = 2/ε, t = dlog2(1

δ)e gives total space in bits

O
(1
ε

log 1
δ
· (log m + log n)

)
The space usage is better than CountSketch by a factor of 1/ε.

Count-Min’s error probability is bounded by ε ‖f−a‖1 instead of
ε ‖f−a‖2 for CountSketch.
For all vectors z ∈ Rn, we have that ‖z‖1 ≥ ‖z‖2.

Count-Min - Analysis II
We have a bound for a single counter. Over t counters the reported
excess is the minimum over all Xi . We can now derive the probability
that all the excesses are at least ε ‖f−a‖1 directly.

Pr(f̂a − fa ≥ ε ‖f−a‖1)) ≤ 1
2t = δ set t =

⌈
log2

(1
δ

)⌉
k = 2/ε, t = dlog2(1

δ)e gives total space in bits

O
(1
ε

log 1
δ
· (log m + log n)

)
The space usage is better than CountSketch by a factor of 1/ε.
Count-Min’s error probability is bounded by ε ‖f−a‖1 instead of
ε ‖f−a‖2 for CountSketch.

For all vectors z ∈ Rn, we have that ‖z‖1 ≥ ‖z‖2.

Count-Min - Analysis II
We have a bound for a single counter. Over t counters the reported
excess is the minimum over all Xi . We can now derive the probability
that all the excesses are at least ε ‖f−a‖1 directly.

Pr(f̂a − fa ≥ ε ‖f−a‖1)) ≤ 1
2t = δ set t =

⌈
log2

(1
δ

)⌉
k = 2/ε, t = dlog2(1

δ)e gives total space in bits

O
(1
ε

log 1
δ
· (log m + log n)

)
The space usage is better than CountSketch by a factor of 1/ε.
Count-Min’s error probability is bounded by ε ‖f−a‖1 instead of
ε ‖f−a‖2 for CountSketch.
For all vectors z ∈ Rn, we have that ‖z‖1 ≥ ‖z‖2.

Frequency estimation - space/time summary
We have seen two one-pass sketching algorithms for frequency
estimation.

CountSketch runs in O(t) = O(log 1/δ) time per token if
t = d1/δe.
CountSketch space usage is

O(t log n + tk log m) = O(1/ε2 log(1/δ)(log m + log n) bits

bits if k = d3/ε2e.
Count-Min runs in O(t) = O(log 1/δ) time per token if t = d1/δe.
Count-Min space usage is

O(t log n + tk log m) = O(1/ε log(1/δ)(log m + log n)

bits if k = d2/εe. This is a factor of 1/ε improvement.

Frequency estimation - space/time summary
We have seen two one-pass sketching algorithms for frequency
estimation.
CountSketch runs in O(t) = O(log 1/δ) time per token if
t = d1/δe.

CountSketch space usage is

O(t log n + tk log m) = O(1/ε2 log(1/δ)(log m + log n) bits

bits if k = d3/ε2e.
Count-Min runs in O(t) = O(log 1/δ) time per token if t = d1/δe.
Count-Min space usage is

O(t log n + tk log m) = O(1/ε log(1/δ)(log m + log n)

bits if k = d2/εe. This is a factor of 1/ε improvement.

Frequency estimation - space/time summary
We have seen two one-pass sketching algorithms for frequency
estimation.
CountSketch runs in O(t) = O(log 1/δ) time per token if
t = d1/δe.
CountSketch space usage is

O(t log n + tk log m) = O(1/ε2 log(1/δ)(log m + log n) bits

bits if k = d3/ε2e.

Count-Min runs in O(t) = O(log 1/δ) time per token if t = d1/δe.
Count-Min space usage is

O(t log n + tk log m) = O(1/ε log(1/δ)(log m + log n)

bits if k = d2/εe. This is a factor of 1/ε improvement.

Frequency estimation - space/time summary
We have seen two one-pass sketching algorithms for frequency
estimation.
CountSketch runs in O(t) = O(log 1/δ) time per token if
t = d1/δe.
CountSketch space usage is

O(t log n + tk log m) = O(1/ε2 log(1/δ)(log m + log n) bits

bits if k = d3/ε2e.
Count-Min runs in O(t) = O(log 1/δ) time per token if t = d1/δe.

Count-Min space usage is

O(t log n + tk log m) = O(1/ε log(1/δ)(log m + log n)

bits if k = d2/εe. This is a factor of 1/ε improvement.

Frequency estimation - space/time summary
We have seen two one-pass sketching algorithms for frequency
estimation.
CountSketch runs in O(t) = O(log 1/δ) time per token if
t = d1/δe.
CountSketch space usage is

O(t log n + tk log m) = O(1/ε2 log(1/δ)(log m + log n) bits

bits if k = d3/ε2e.
Count-Min runs in O(t) = O(log 1/δ) time per token if t = d1/δe.
Count-Min space usage is

O(t log n + tk log m) = O(1/ε log(1/δ)(log m + log n)

bits if k = d2/εe. This is a factor of 1/ε improvement.

Frequency estimation - estimation error summary
CountSketch: with k = d3/ε2e and t = dlog2(1/δ)e,

Pr(f̂a − fa ≥ ε ‖f−a‖2)) ≤ δ

Count-Min: with k = d2/εe and t = dlog2(1/δ)e,

Pr(f̂a − fa ≥ ε ‖f−a‖1)) ≤ δ

For all vectors z ∈ Rn, we have that ‖z‖1 ≥ ‖z‖2 so the estimation
error is worse for Count-Min.
By setting k = 1/ε, Misra-Gries gives us an estimate

fj − ε ‖f ‖1 ≤ f̂j ≤ fj for every j ∈ [n]

Misra-Gries gives a lower bound on frequency where
Count-Min/CountSketch give upper bounds.
Misra-Gries uses O((1/ε)(log m + log n) bits but does not work in
the turnstile model (with deletions).

Frequency estimation - estimation error summary
CountSketch: with k = d3/ε2e and t = dlog2(1/δ)e,

Pr(f̂a − fa ≥ ε ‖f−a‖2)) ≤ δ

Count-Min: with k = d2/εe and t = dlog2(1/δ)e,

Pr(f̂a − fa ≥ ε ‖f−a‖1)) ≤ δ

For all vectors z ∈ Rn, we have that ‖z‖1 ≥ ‖z‖2 so the estimation
error is worse for Count-Min.
By setting k = 1/ε, Misra-Gries gives us an estimate

fj − ε ‖f ‖1 ≤ f̂j ≤ fj for every j ∈ [n]

Misra-Gries gives a lower bound on frequency where
Count-Min/CountSketch give upper bounds.
Misra-Gries uses O((1/ε)(log m + log n) bits but does not work in
the turnstile model (with deletions).

Frequency estimation - estimation error summary
CountSketch: with k = d3/ε2e and t = dlog2(1/δ)e,

Pr(f̂a − fa ≥ ε ‖f−a‖2)) ≤ δ

Count-Min: with k = d2/εe and t = dlog2(1/δ)e,

Pr(f̂a − fa ≥ ε ‖f−a‖1)) ≤ δ

For all vectors z ∈ Rn, we have that ‖z‖1 ≥ ‖z‖2 so the estimation
error is worse for Count-Min.

By setting k = 1/ε, Misra-Gries gives us an estimate

fj − ε ‖f ‖1 ≤ f̂j ≤ fj for every j ∈ [n]

Misra-Gries gives a lower bound on frequency where
Count-Min/CountSketch give upper bounds.
Misra-Gries uses O((1/ε)(log m + log n) bits but does not work in
the turnstile model (with deletions).

Frequency estimation - estimation error summary
CountSketch: with k = d3/ε2e and t = dlog2(1/δ)e,

Pr(f̂a − fa ≥ ε ‖f−a‖2)) ≤ δ

Count-Min: with k = d2/εe and t = dlog2(1/δ)e,

Pr(f̂a − fa ≥ ε ‖f−a‖1)) ≤ δ

For all vectors z ∈ Rn, we have that ‖z‖1 ≥ ‖z‖2 so the estimation
error is worse for Count-Min.
By setting k = 1/ε, Misra-Gries gives us an estimate

fj − ε ‖f ‖1 ≤ f̂j ≤ fj for every j ∈ [n]

Misra-Gries gives a lower bound on frequency where
Count-Min/CountSketch give upper bounds.
Misra-Gries uses O((1/ε)(log m + log n) bits but does not work in
the turnstile model (with deletions).

Frequency estimation - estimation error summary
CountSketch: with k = d3/ε2e and t = dlog2(1/δ)e,

Pr(f̂a − fa ≥ ε ‖f−a‖2)) ≤ δ

Count-Min: with k = d2/εe and t = dlog2(1/δ)e,

Pr(f̂a − fa ≥ ε ‖f−a‖1)) ≤ δ

For all vectors z ∈ Rn, we have that ‖z‖1 ≥ ‖z‖2 so the estimation
error is worse for Count-Min.
By setting k = 1/ε, Misra-Gries gives us an estimate

fj − ε ‖f ‖1 ≤ f̂j ≤ fj for every j ∈ [n]

Misra-Gries gives a lower bound on frequency where
Count-Min/CountSketch give upper bounds.

Misra-Gries uses O((1/ε)(log m + log n) bits but does not work in
the turnstile model (with deletions).

Frequency estimation - estimation error summary
CountSketch: with k = d3/ε2e and t = dlog2(1/δ)e,

Pr(f̂a − fa ≥ ε ‖f−a‖2)) ≤ δ

Count-Min: with k = d2/εe and t = dlog2(1/δ)e,

Pr(f̂a − fa ≥ ε ‖f−a‖1)) ≤ δ

For all vectors z ∈ Rn, we have that ‖z‖1 ≥ ‖z‖2 so the estimation
error is worse for Count-Min.
By setting k = 1/ε, Misra-Gries gives us an estimate

fj − ε ‖f ‖1 ≤ f̂j ≤ fj for every j ∈ [n]

Misra-Gries gives a lower bound on frequency where
Count-Min/CountSketch give upper bounds.
Misra-Gries uses O((1/ε)(log m + log n) bits but does not work in
the turnstile model (with deletions).

