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The majority problem

Given a sequence of integers a1, . . . , am, does there exist a integer
that occurs more than m/2 times?

Originally considered for elections. Three candidates A,B and C . Did
any of them get a majority?

Naive majority solution

Votes: AAACCBBCCCBCC . There were 13 votes in total.

We could sort the input giving AAABBBCCCCCCC .

Then traverse in linear time to find if any occur ≥ 7 times.

Linear space and O(m logm) time.
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Finding the majority

Solved in 1981 by Boyer and Moore when considering votes. Run
Majority for each item in the input.

Majority(j)

initialise item α
initialise counter c = 0
Repeat for each j

if c == 0

α = j
c = 1

elif j == α
c = c + 1

else

c = c - 1



Majority algorithm
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elif j == α
c = c + 1

else
c = c - 1

Consider the stream arriving from
left to right.

¯
AAACCBBCCCBCC

α = A
c = 1

C is the majority itemX
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Time and space of the majority algorithm

Majority(j)

initialise item α
initialise counter c = 0
Repeat for each j
if c == 0

α = j
c = 1

elif j == α
c = c + 1

else

c = c - 1

Running time: At most 2m
comparisons

O(m) overall.

Space usage: One item and one
integer

O(log n + logm) bits overall
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Correctness of the majority algorithm

Majority(j)

initialise item α
initialise counter c = 0
Repeat for each j
if c == 0

α = j
c = 1

elif j == α
c = c + 1

else

c = c - 1

If there is a majority item, it is re-
ported.

Let α∗ be the final value of α

Run through input from left to right.

Let c ′ = c if α = α∗ and −c
otherwise.

Every occurrence of α∗ increases c ′ by
one.

Every occurrence that is not α∗ either increases or decreases c ′ by 1.

If α∗ is in the majority, there are more increases than decreases and
so c ′ = c which implies α = α∗.
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Correctness of the majority algorithm

¯
AAACCBBCCCBCC

α = A

c = 1

c ′ = −1

If there is a majority item, it is reported.

A,A,A,C ,C ,B,B,C ,C ,C ,B,C ,C
At termination c = 3, α∗ = C

Run through input from left to right.

Let c ′ = c if α = α∗ and −c otherwise.

Every occurence of α∗ increases c ′ by one.

Every occurence that is not α∗ either
increases or decreases c ′ by 1.

If α∗ is in the majority, more increases
than decreases!
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Misra-Gries - A generalisation of Majority

Given k, which elements (if any) appear more than m/k times?

Misra-Gries(a1, a2, . . . , am)

set A = ∅
For each i
if ai ∈ A

f̃ai = f̃ai + 1
else

if |A| < k − 1
add (ai , 1) to A

else

for (ai , f̃ai ) ∈ A

f̃ai = f̃ai − 1

if f̃ai = 0

remove(ai , f̃ai ) from A

• Returns at most k − 1 pairs (v , f̃v )

• For every (v , f̃v ) ∈ A where the
true frequency is fv ,

fv −
m

k
≤ f̃v ≤ fv

• Every 1/k-heavy hitter is found.

• Some non-heaver hitters might be
reported.

• Second pass may be needed



Misra-Gries - A generalisation of Majority

Given k, which elements (if any) appear more than m/k times?

Misra-Gries(a1, a2, . . . , am)

set A = ∅
For each i
if ai ∈ A

f̃ai = f̃ai + 1
else

if |A| < k − 1
add (ai , 1) to A

else

for (ai , f̃ai ) ∈ A

f̃ai = f̃ai − 1

if f̃ai = 0

remove(ai , f̃ai ) from A

• Returns at most k − 1 pairs (v , f̃v )

• For every (v , f̃v ) ∈ A where the
true frequency is fv ,

fv −
m

k
≤ f̃v ≤ fv

• Every 1/k-heavy hitter is found.

• Some non-heaver hitters might be
reported.

• Second pass may be needed

f̃ai is the estimate for the frequency of token ai



Misra-Gries - A generalisation of Majority

Given k, which elements (if any) appear more than m/k times?

Misra-Gries(a1, a2, . . . , am)

set A = ∅
For each i
if ai ∈ A

f̃ai = f̃ai + 1
else

if |A| < k − 1
add (ai , 1) to A

else

for (ai , f̃ai ) ∈ A

f̃ai = f̃ai − 1

if f̃ai = 0

remove(ai , f̃ai ) from A

• Returns at most k − 1 pairs (v , f̃v )

• For every (v , f̃v ) ∈ A where the
true frequency is fv ,

fv −
m

k
≤ f̃v ≤ fv

• Every 1/k-heavy hitter is found.

• Some non-heaver hitters might be
reported.

• Second pass may be needed

f̃ai is the estimate for the frequency of token ai



Misra-Gries - A generalisation of Majority

Given k, which elements (if any) appear more than m/k times?

Misra-Gries(a1, a2, . . . , am)

set A = ∅
For each i
if ai ∈ A

f̃ai = f̃ai + 1
else

if |A| < k − 1
add (ai , 1) to A

else

for (ai , f̃ai ) ∈ A

f̃ai = f̃ai − 1

if f̃ai = 0

remove(ai , f̃ai ) from A

• Returns at most k − 1 pairs (v , f̃v )

• For every (v , f̃v ) ∈ A where the
true frequency is fv ,

fv −
m

k
≤ f̃v ≤ fv

• Every 1/k-heavy hitter is found.

• Some non-heaver hitters might be
reported.

• Second pass may be needed

f̃ai is the estimate for the frequency of token ai



Misra-Gries - A generalisation of Majority

Given k, which elements (if any) appear more than m/k times?

Misra-Gries(a1, a2, . . . , am)

set A = ∅
For each i
if ai ∈ A

f̃ai = f̃ai + 1
else

if |A| < k − 1
add (ai , 1) to A

else

for (ai , f̃ai ) ∈ A

f̃ai = f̃ai − 1

if f̃ai = 0

remove(ai , f̃ai ) from A

• Returns at most k − 1 pairs (v , f̃v )

• For every (v , f̃v ) ∈ A where the
true frequency is fv ,

fv −
m

k
≤ f̃v ≤ fv

• Every 1/k-heavy hitter is found.

• Some non-heaver hitters might be
reported.

• Second pass may be needed

f̃ai is the estimate for the frequency of token ai



Misra-Gries - A generalisation of Majority

Given k, which elements (if any) appear more than m/k times?

Misra-Gries(a1, a2, . . . , am)

set A = ∅
For each i
if ai ∈ A

f̃ai = f̃ai + 1
else

if |A| < k − 1
add (ai , 1) to A

else

for (ai , f̃ai ) ∈ A

f̃ai = f̃ai − 1

if f̃ai = 0

remove(ai , f̃ai ) from A

• Returns at most k − 1 pairs (v , f̃v )

• For every (v , f̃v ) ∈ A where the
true frequency is fv ,

fv −
m

k
≤ f̃v ≤ fv

• Every 1/k-heavy hitter is found.

• Some non-heaver hitters might be
reported.

• Second pass may be needed

f̃ai is the estimate for the frequency of token ai



Misra-Gries - A generalisation of Majority

Given k, which elements (if any) appear more than m/k times?

Misra-Gries(a1, a2, . . . , am)

set A = ∅
For each i
if ai ∈ A

f̃ai = f̃ai + 1
else

if |A| < k − 1
add (ai , 1) to A

else

for (ai , f̃ai ) ∈ A

f̃ai = f̃ai − 1

if f̃ai = 0

remove(ai , f̃ai ) from A

• Returns at most k − 1 pairs (v , f̃v )

• For every (v , f̃v ) ∈ A where the
true frequency is fv ,

fv −
m

k
≤ f̃v ≤ fv

• Every 1/k-heavy hitter is found.

• Some non-heaver hitters might be
reported.

• Second pass may be needed

f̃ai is the estimate for the frequency of token ai



Misra-Gries - Worked example

Given k, which elements (if any) appear more than m/k times?

Misra-Gries(a1, a2, . . . , am)

set A = ∅
For each i
if ai ∈ A

f̃ai = f̃ai + 1
else

if |A| < k − 1
add (ai , 1) to A

else

for (ai , f̃ai ) ∈ A

f̃ai = f̃ai − 1

if f̃ai = 0

remove(ai , f̃ai ) from A

Stream: ACABACBB
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Misra-Gries - Space/Time

Given k, which elements (if any) appear more than m/k times?

Misra-Gries(a1, a2, . . . , am)
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For each i
if ai ∈ A
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add (ai , 1) to A

else

for (ai , f̃ai ) ∈ A

f̃ai = f̃ai − 1

if f̃ai = 0

remove(ai , f̃ai ) from A

• Space: k − 1 pairs stored in total

• O(k(logm + log n)) bits space.

• Running time depends on data
structure used.

• Balanced binary search tree
O(log n) time per operation.

• We can only decrement (or
remove) if we previously
incremented. Therefore O(m)
operations.

• O(m(log n)) time overall.



Misra-Gries - Space/Time

Given k, which elements (if any) appear more than m/k times?

Misra-Gries(a1, a2, . . . , am)

set A = ∅
For each i
if ai ∈ A

f̃ai = f̃ai + 1
else

if |A| < k − 1
add (ai , 1) to A

else

for (ai , f̃ai ) ∈ A

f̃ai = f̃ai − 1

if f̃ai = 0

remove(ai , f̃ai ) from A

• Space: k − 1 pairs stored in total

• O(k(logm + log n)) bits space.

• Running time depends on data
structure used.

• Balanced binary search tree
O(log n) time per operation.

• We can only decrement (or
remove) if we previously
incremented. Therefore O(m)
operations.

• O(m(log n)) time overall.



Misra-Gries - Space/Time

Given k, which elements (if any) appear more than m/k times?

Misra-Gries(a1, a2, . . . , am)

set A = ∅
For each i
if ai ∈ A

f̃ai = f̃ai + 1
else

if |A| < k − 1
add (ai , 1) to A

else

for (ai , f̃ai ) ∈ A

f̃ai = f̃ai − 1

if f̃ai = 0

remove(ai , f̃ai ) from A

• Space: k − 1 pairs stored in total

• O(k(logm + log n)) bits space.

• Running time depends on data
structure used.

• Balanced binary search tree
O(log n) time per operation.

• We can only decrement (or
remove) if we previously
incremented. Therefore O(m)
operations.

• O(m(log n)) time overall.



Misra-Gries - Space/Time

Given k, which elements (if any) appear more than m/k times?

Misra-Gries(a1, a2, . . . , am)

set A = ∅
For each i
if ai ∈ A

f̃ai = f̃ai + 1
else

if |A| < k − 1
add (ai , 1) to A

else

for (ai , f̃ai ) ∈ A

f̃ai = f̃ai − 1

if f̃ai = 0

remove(ai , f̃ai ) from A

• Space: k − 1 pairs stored in total

• O(k(logm + log n)) bits space.

• Running time depends on data
structure used.

• Balanced binary search tree
O(log n) time per operation.

• We can only decrement (or
remove) if we previously
incremented. Therefore O(m)
operations.

• O(m(log n)) time overall.



Misra-Gries - Space/Time

Given k, which elements (if any) appear more than m/k times?

Misra-Gries(a1, a2, . . . , am)

set A = ∅
For each i
if ai ∈ A

f̃ai = f̃ai + 1
else

if |A| < k − 1
add (ai , 1) to A

else

for (ai , f̃ai ) ∈ A

f̃ai = f̃ai − 1

if f̃ai = 0

remove(ai , f̃ai ) from A

• Space: k − 1 pairs stored in total

• O(k(logm + log n)) bits space.

• Running time depends on data
structure used.

• Balanced binary search tree
O(log n) time per operation.

• We can only decrement (or
remove) if we previously
incremented. Therefore O(m)
operations.

• O(m(log n)) time overall.



Misra-Gries - Space/Time

Given k, which elements (if any) appear more than m/k times?

Misra-Gries(a1, a2, . . . , am)

set A = ∅
For each i
if ai ∈ A

f̃ai = f̃ai + 1
else

if |A| < k − 1
add (ai , 1) to A

else

for (ai , f̃ai ) ∈ A

f̃ai = f̃ai − 1

if f̃ai = 0

remove(ai , f̃ai ) from A

• Space: k − 1 pairs stored in total

• O(k(logm + log n)) bits space.

• Running time depends on data
structure used.

• Balanced binary search tree
O(log n) time per operation.

• We can only decrement (or
remove) if we previously
incremented. Therefore O(m)
operations.

• O(m(log n)) time overall.



Misra-Gries - Space/Time

Given k, which elements (if any) appear more than m/k times?

Misra-Gries(a1, a2, . . . , am)

set A = ∅
For each i
if ai ∈ A

f̃ai = f̃ai + 1
else

if |A| < k − 1
add (ai , 1) to A

else

for (ai , f̃ai ) ∈ A

f̃ai = f̃ai − 1

if f̃ai = 0

remove(ai , f̃ai ) from A

• Space: k − 1 pairs stored in total

• O(k(logm + log n)) bits space.

• Running time depends on data
structure used.

• Balanced binary search tree
O(log n) time per operation.

• We can only decrement (or
remove) if we previously
incremented. Therefore O(m)
operations.

• O(m(log n)) time overall.



Modified Misra-Gries - Analysis

Let’s look at a less efficient version for the analysis.

Modified-MG(a1, a2, . . . , am)

set A = empty multiset

For each i
if ai ∈ A
add a copy of ai to A

else

if |supp(A)| < k − 1
add ai to A

else

add and then delete ai
delete one copy of each

item in A

• |supp(A)| is the number of
distinct tokens in A.

• Identical except for space usage.

• Items are deleted in groups of k.

• Each item can be deleted ≤ m
k

times.
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Misra-Gries - Analysis

Statement for Misra-Gries
For every (v , f̃v ) ∈ A where the true frequency is fv ,

fv −
m

k
≤ f̃v ≤ fv

I Items are deleted in groups of k.

I Each item can therefore be deleted ≤ m
k times.

I Let a(v) be the number of times v was seen without incrementing
f̃v . Let b(v) be the number of times f̃v was decremented.

I We now have that f̃v = fv − a(v)− b(v) = fv − (a(v) + b(v)).

I The number of decrements equals a(v) + b(v), therefore
a(v) + b(v) ≤ m

k .

I Hence fv − m
k ≤ f̃v .
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Summary

Misra-Gries

The Misra-Gries algorithm uses O(1ε (logm + log n)) bits of
space to find a set of size at most d1ε e that contains every
item of frequency at least εm.

1. Majority uses O(logm + log n) space and runs in linear time.

2. If there is an item that occurs more than m/2 times the
Majority algorithm will output it.

3. With a second pass we can check if there is a majority in the
stream

4. Misra-Gries uses O(k(logm + log n)) space and runs in
O(m logm) time.

5. It will output all tokens that occur more than m/k times but may
output others as well.

6. With a second pass we can remove all the undesired tokens.



Summary

Misra-Gries

The Misra-Gries algorithm uses O(1ε (logm + log n)) bits of
space to find a set of size at most d1ε e that contains every
item of frequency at least εm.

1. Majority uses O(logm + log n) space and runs in linear time.

2. If there is an item that occurs more than m/2 times the
Majority algorithm will output it.

3. With a second pass we can check if there is a majority in the
stream

4. Misra-Gries uses O(k(logm + log n)) space and runs in
O(m logm) time.

5. It will output all tokens that occur more than m/k times but may
output others as well.

6. With a second pass we can remove all the undesired tokens.



Summary

Misra-Gries

The Misra-Gries algorithm uses O(1ε (logm + log n)) bits of
space to find a set of size at most d1ε e that contains every
item of frequency at least εm.

1. Majority uses O(logm + log n) space and runs in linear time.

2. If there is an item that occurs more than m/2 times the
Majority algorithm will output it.

3. With a second pass we can check if there is a majority in the
stream

4. Misra-Gries uses O(k(logm + log n)) space and runs in
O(m logm) time.

5. It will output all tokens that occur more than m/k times but may
output others as well.

6. With a second pass we can remove all the undesired tokens.



Summary

Misra-Gries

The Misra-Gries algorithm uses O(1ε (logm + log n)) bits of
space to find a set of size at most d1ε e that contains every
item of frequency at least εm.

1. Majority uses O(logm + log n) space and runs in linear time.

2. If there is an item that occurs more than m/2 times the
Majority algorithm will output it.

3. With a second pass we can check if there is a majority in the
stream

4. Misra-Gries uses O(k(logm + log n)) space and runs in
O(m logm) time.

5. It will output all tokens that occur more than m/k times but may
output others as well.

6. With a second pass we can remove all the undesired tokens.
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