Topics in TCS

Majority and Misra-Gries

Raphaél Clifford

The majority problem

Given a sequence of integers ai, ..., an, does there exist a integer
that occurs more than m/2 times?

The majority problem

Given a sequence of integers ai, ..., an, does there exist a integer
that occurs more than m/2 times?

Originally considered for elections. Three candidates A, B and C. Did
any of them get a majority?

The majority problem

Given a sequence of integers ai, ..., an, does there exist a integer
that occurs more than m/2 times?

Originally considered for elections. Three candidates A, B and C. Did
any of them get a majority?

_Naive majority solution

Votes: AAACCBBCCCBCC. There were 13 votes in total.

The majority problem

Given a sequence of integers ai, ..., an, does there exist a integer
that occurs more than m/2 times?

Originally considered for elections. Three candidates A, B and C. Did
any of them get a majority?

_Naive majority solution

Votes: AAACCBBCCCBCC. There were 13 votes in total.

We could sort the input giving AAABBBCCCCCCC.

The majority problem

Given a sequence of integers ai, ..., an, does there exist a integer
that occurs more than m/2 times?

Originally considered for elections. Three candidates A, B and C. Did
any of them get a majority?

_Naive majority solution

Votes: AAACCBBCCCBCC. There were 13 votes in total.

We could sort the input giving AAABBBCCCCCCC.

Then traverse in linear time to find if any occur > 7 times.

The majority problem

Given a sequence of integers ai, ..., an, does there exist a integer
that occurs more than m/2 times?

Originally considered for elections. Three candidates A, B and C. Did
any of them get a majority?

_Naive majority solution

Votes: AAACCBBCCCBCC. There were 13 votes in total.

We could sort the input giving AAABBBCCCCCCC.

Then traverse in linear time to find if any occur > 7 times.

Linear space and O(mlog m) time.

Finding the majority

Solved in 1981 by Boyer and Moore when considering votes. Run
MAJORITY for each item in the input.

~ N

MaJoriTY(j)

initialise item «
initialise counter ¢ =0
Repeat for each j

if c == 0
o= i
c=1
elif | == «
c=c+1
else

Majority algorithm

MAJORITY ()

initialise item «
initialise counter c =0
Repeat for each |

if ¢ ==
a=j
c =1
elif | == «
c=c+1
else

5

Consider the stream arriving from
left to right.

AAACCBBCCCBCC

Majority algorithm

MAJORITY ()

initialise item «
initialise counter c =0
Repeat for each |

if ¢ ==
a=j
c=1
elif | == «
c=c+1
else

5

Consider the stream arriving from
left to right.

AAACCBBCCCBCC

Majority algorithm

MAJORITY ()

initialise item «
initialise counter c =0
Repeat for each |

if ¢ ==
a=j
c=1
elif | == «
c=c+1
else

5

Consider the stream arriving from
left to right.

AAACCBBCCCBCC

Majority algorithm

MAJORITY ()

initialise item «
initialise counter c =0
Repeat for each |

if ¢ ==
a=j
c=1
elif | == «
c=c+1
else

5

Consider the stream arriving from
left to right.

AAACCBBCCCBCC

Majority algorithm

MAJORITY ()

initialise item «
initialise counter c =0
Repeat for each |

if ¢ ==
a=j
c=1
elif | == «
c=c+1
else

5

Consider the stream arriving from
left to right.

AAACCBBCCCBCC

Majority algorithm

MAJORITY ()

initialise item «
initialise counter c =0
Repeat for each |

if ¢ ==
a=j
c=1
elif | == «
c=c+1
else

5

Consider the stream arriving from
left to right.

AAACCBBCCCBCC

Majority algorithm

MAJORITY ()

initialise item «
initialise counter c =0
Repeat for each |

if ¢ ==
a=j
c =1
elif | == «
c=c+1
else

5

Consider the stream arriving from
left to right.

AAACCBBCCCBCC

o=
c=1

Majority algorithm

MAJORITY ()

initialise item «
initialise counter c =0
Repeat for each |

if ¢ ==
a=j
c=1
elif | == «
c=c+1
else

5

Consider the stream arriving from
left to right.

AAACCBBCCCBCC

a =
c=0

Majority algorithm

MAJORITY ()

initialise item «
initialise counter c =0
Repeat for each |

if ¢ ==
a=j
c =1
elif | == «
c=c+1
else

5

Consider the stream arriving from
left to right.

AAACCBBCCCBCC

Majority algorithm

MAJORITY ()

initialise item «
initialise counter c =0
Repeat for each |

if ¢ ==
a=j
c=1
elif | == «
c=c+1
else

5

Consider the stream arriving from
left to right.

AAACCBBCCCBCC

Majority algorithm

MAJORITY ()

initialise item «
initialise counter c =0
Repeat for each |

if ¢ ==
a=j
c=1
elif | == «
c=c+1
else

5

Consider the stream arriving from
left to right.

AAACCBBCCCBCC

Majority algorithm

MAJORITY ()

initialise item «
initialise counter c =0
Repeat for each |

if ¢ ==
a=j
c=1
elif | == «
c=c+1
else

5

Consider the stream arriving from
left to right.

AAACCBBCCCBCC

Majority algorithm

MaJoriTY(j)

initialise item «

5

initialise counter ¢ =0

Repeat for each |

if ¢ ==
a=J
c=1
elif | == «
c=c+
else
c=c -

Consider the stream arriving from
left to right.

AAACCBBCCCBCC

C is the majority item

Majority algorithm - wrong answer

MAJORITY(])

initialise item «

initialise counter c =0

Repeat for each |

if ¢ ==
a=j
c=1
elif | == «
c=c+
else

cC=cC -

1

1

Consider the stream arriving from
left to right.

AAABBBC

Majority algorithm - wrong answer

MAJORITY(])

initialise item «

initialise counter c =0

Repeat for each |

if ¢ ==
a=j
c=1
elif | == «
c=c+
else

cC=cC -

1

1

Consider the stream arriving from
left to right.

AAABBBC

a=A

Majority algorithm - wrong answer

MAJORITY(])

initialise item «

initialise counter c =0

Repeat for each |

if ¢ ==
a=j
c=1
elif | == «
c=c+
else

cC=cC -

1

1

Consider the stream arriving from
left to right.

AAABBBC

a=A

Majority algorithm - wrong answer

MAJORITY(])

initialise item «

initialise counter c =0

Repeat for each |

if ¢ ==
a=j
c=1
elif | == «
c=c+
else

c=c -

1

1

Consider the stream arriving from
left to right.

AAABBBC

a=A

Majority algorithm - wrong answer

MAJORITY(])

initialise item «

initialise counter c =0

Repeat for each |

if ¢ ==
a=j
c=1
elif | == «
c=c+
else

c=c -

1

1

Consider the stream arriving from
left to right.

AAABBBC

Majority algorithm - wrong answer

MAJORITY(])

initialise item «

initialise counter c =0

Repeat for each |

if ¢ ==
a=j
c=1
elif | == «
c=c+
else

c=c -

1

1

Consider the stream arriving from
left to right.

AAABBBC

a=A

Majority algorithm - wrong answer

MAJORITY(])

initialise item «

initialise counter c =0

Repeat for each |

if ¢ ==
a=j
c=1
elif | == «
c=c+
else

cC=cC -

1

1

Consider the stream arriving from
left to right.

AAABBBC

o =
c=1

Time and space of the majority algorithm

MaJoriTy(j)

initialise item «
initialise counter c¢=0
Repeat for each j

if ¢ ==
a =7
c=1
elif j == «
c=c+1
else

Running time: At most 2m
comparisons

O(m) overall.

Time and space of the majority algorithm

MaJoriTy(j)
initialise item «
initialise counter c=10
Repeat for each j
if ¢ ==
]
1
elif j == «
@

else

Running time: At most 2m
comparisons

O(m) overall.

Space usage: One item and one
integer

O(log n + log m) bits overall

Correctness of the majority algorithm

MajoriTy (j)

initialise item «
initialise counter c¢c=0
Repeat for each j

if ¢ ==
a =7
c=1
elif j == «
c=c+1
else

If there is a majority item, it is re-
ported.

Correctness of the majority algorithm

MajoriTy (j)

initialise item «
initialise counter c¢c=0
Repeat for each j

if ¢ ==
a =7
c=1
elif j == «
c=c+1
else

If there is a majority item, it is re-

ported.

Let a* be the final value of «

Correctness of the majority algorithm

MajoriTy (j)
initialise item «
initialise counter c¢c=0
Repeat for each j

if ¢ ==

elif j ==

else

If there is a majority item, it is re-
ported.

Let a* be the final value of «

Run through input from left to right.

Correctness of the majority algorithm

MajoriTy (j)
initialise item «
initialise counter c¢c=0
Repeat for each j

if ¢ ==

elif j ==

else

If there is a majority item, it is re-
ported.

Let a* be the final value of «
Run through input from left to right.

Let ¢/ =cif a =a* and —c
otherwise.

Correctness of the majority algorithm

MajoriTy (j)

initialise item «
initialise counter c¢c=0
Repeat for each j

if ¢ ==
a =7
c=1
elif j == «
c=c+1
else
c=c-1

If there is a majority item, it is re-
ported.

Let a* be the final value of «

Run through input from left to right.
Let ¢/ =cif a =a* and —c
otherwise.

Every occurrence of a* increases ¢’ by
one.

Correctness of the majority algorithm

MajoriTy (j)

initialise item «
initialise counter c¢c=0
Repeat for each j

if ¢ ==
a =7
c=1
elif j == «
c=c+1
else
c=c-1

If there is a majority item, it is re-
ported.

Let a* be the final value of «

Run through input from left to right.
Let ¢/ =cif a =a* and —c
otherwise.

Every occurrence of a* increases ¢’ by
one.

Every occurrence that is not a* either increases or decreases ¢’ by 1.

Correctness of the majority algorithm

MAJORITY(§) If there is a majority item, it is re-

ported.
initialise item «
initialise counter c=10
Repeat for each j Let a* be the final value of «
if ¢ ==
a =] Run through input from left to right.
@=1 Let ¢ =cif a = a* and —c
elif j == « .
otherwise.
c=c+1
else Every occurrence of a* increases ¢’ by
c=c¢-1 one.

Every occurrence that is not a* either increases or decreases ¢’ by 1.

If @* is in the majority, there are more increases than decreases and

so ¢/ = ¢ which implies a = o*. O

Correctness of the majority algorithm

If there is a majority item, it is reported.

AAACCBBC,C,C,B,C,C
At termination c =3, o* = C

AAACCBBCCCBCC
Run through input from left to right.
Let ¢/ = c if @« = a* and —c otherwise.
a=A
Every occurence of o* increases ¢’ by one.
C =
. Every occurence that is not a* either
c=-1 increases or decreases ¢’ by 1.

If & is in the majority, more increases
than decreases!

Correctness of the majority algorithm

If there is a majority item, it is reported.

AAACCBBC,C,C,B,C,C
At termination c =3, o* = C

AAACCBBCCCBCC
Run through input from left to right.
Let ¢/ = c if @« = a* and —c otherwise.
a=A
Every occurence of o* increases ¢’ by one.
C =
. Every occurence that is not a* either
c=-2 increases or decreases ¢’ by 1.

If & is in the majority, more increases
than decreases!

Correctness of the majority algorithm

If there is a majority item, it is reported.

AAACCBBC,C,C,B,C,C
At termination c =3, o* = C

AAACCBBCCCBCC
Run through input from left to right.
Let ¢/ = c if @« = a* and —c otherwise.
a=A
Every occurence of o* increases ¢’ by one.
C =
. Every occurence that is not a* either
c=-3 increases or decreases ¢’ by 1.

If & is in the majority, more increases
than decreases!

Correctness of the majority algorithm

If there is a majority item, it is reported.

AAACCBBC,C,C,B,C,C
At termination c =3, o* = C

AAACCBBCCCBCC
Run through input from left to right.
Let ¢/ = c if @« = a* and —c otherwise.
a=A
Every occurence of o* increases ¢’ by one.
C =
. Every occurence that is not a* either
c=-2 increases or decreases ¢’ by 1.

If & is in the majority, more increases
than decreases!

Correctness of the majority algorithm

If there is a majority item, it is reported.

AAACCBBC,C,C,B,C,C
At termination c =3, o* = C

AAACCBBCCCBCC
Run through input from left to right.
Let ¢/ = c if @« = a* and —c otherwise.
a=A
Every occurence of o* increases ¢’ by one.
C =
. Every occurence that is not a* either
c=-1 increases or decreases ¢’ by 1.

If & is in the majority, more increases
than decreases!

Correctness of the majority algorithm

If there is a majority item, it is reported.

AAACCBBC,C,C,B,C,C
At termination c =3, o* = C

AAACCBBCCCBCC

Run through input from left to right.

Let ¢/ = c if @« = a* and —c otherwise.
a=A

Every occurence of o* increases ¢’ by one.
c=0
) Every occurence that is not a* either
c=0 increases or decreases ¢’ by 1.

If & is in the majority, more increases
than decreases!

Correctness of the majority algorithm

If there is a majority item, it is reported.

AAACCBBC,C,C,B,C,C
At termination c =3, o* = C

AAACCBBCCCBCC
Run through input from left to right.
Let ¢/ = c if @« = a* and —c otherwise.
a=B8B
) Every occurence of o* increases ¢’ by one.
C =
. Every occurence that is not a* either
c=-1 increases or decreases ¢’ by 1.

If & is in the majority, more increases
than decreases!

Correctness of the majority algorithm

If there is a majority item, it is reported.

AAACCBBC,C,C,B,C,C
At termination c =3, o* = C

AAACCBBCCCBCC

Run through input from left to right.

Let ¢/ = c if @« = a* and —c otherwise.
a=B8B

Every occurence of o* increases ¢’ by one.
c=0

) Every occurence that is not a* either

c=0 increases or decreases ¢’ by 1.

If & is in the majority, more increases
than decreases!

Correctness of the majority algorithm

If there is a majority item, it is reported.

AAACCBBC,C,C,B,C,C
At termination c =3, o* = C

AAACCBBCCCBCC
Run through input from left to right.
Let ¢/ = c if @« = a* and —c otherwise.
a=C
Every occurence of o* increases ¢’ by one.
C =
) Every occurence that is not a* either
c =1

increases or decreases ¢’ by 1.

If & is in the majority, more increases
than decreases!

Correctness of the majority algorithm

If there is a majority item, it is reported.

AAACCBBC,C,C,B,C,C
At termination c =3, o* = C

AAACCBBCCCBCC
Run through input from left to right.
Let ¢/ = c if @« = a* and —c otherwise.
a=C
Every occurence of o* increases ¢’ by one.
C =
) Every occurence that is not a* either
c =2

increases or decreases ¢’ by 1.

If & is in the majority, more increases
than decreases!

Correctness of the majority algorithm

If there is a majority item, it is reported.

AAACCBBC,C,C,B,C,C
At termination c =3, o* = C

AAACCBBCCCBCC
Run through input from left to right.
Let ¢/ = c if @« = a* and —c otherwise.
a=C
Every occurence of o* increases ¢’ by one.
C =
) Every occurence that is not a* either
c =1

increases or decreases ¢’ by 1.

If & is in the majority, more increases
than decreases!

Correctness of the majority algorithm

If there is a majority item, it is reported.

AAACCBBC,C,C,B,C,C
At termination c =3, o* = C

AAACCBBCCCBCC
Run through input from left to right.
Let ¢/ = c if @« = a* and —c otherwise.
a=C
Every occurence of o* increases ¢’ by one.
C =
) Every occurence that is not a* either
c =2

increases or decreases ¢’ by 1.

If & is in the majority, more increases
than decreases!

Correctness of the majority algorithm

If there is a majority item, it is reported.

AAACCBBC,C,C,B,C,C
At termination c =3, o* = C

AAACCBBCCCBCC

Run through input from left to right.

Let ¢/ = c if @« = a* and —c otherwise.
a=C

Every occurence of o* increases ¢’ by one.
C =
) Every occurence that is not a* either
c=3 increases or decreases ¢’ by 1.

If & is in the majority, more increases
than decreases!

Misra-Gries - A generalisation of Majority

Given k, which elements (if any) appear more than m/k times?

MisrA-GRIES (a1, an,...,am)

set A =10
For each |
if a, €A
?a,- = 7?3,- +1
else
if |Al<k-1
add (aj,1) to A
else
for (aj, 7‘3.) €A

fo = — 1
if f, =0

remove(a;, f,,) from A

Misra-Gries - A generalisation of Majority

Given k, which elements (if any) appear more than m/k times?

M1SRA-GRIES(a1,a0,..-7dm)

-
-
-
-

set A=10."
For eaqh/i
if a,E A
fa—f +1
else
if |Al<k-1
add (aj,1) to A
else
for (a

or (aj,F3,) € A
Fo=F—1

if f,, =0

remove(a;, f»,) from A

_[E,. is the estimate for the frequency of token a;J

Misra-Gries - A generalisation of Majority

Given k, which elements (if any) appear more than m/k times?

- ?‘—,,,. is the estimate for the frequency of token a;J

M1SRA-GRIES(a1,a0,..-7dm) [

-
-
-
-

set A=10."
For eaqh/i

if a,e A
G A—f +1
else
if |Al<k-1
add (aj,1) to A
else
for (aj,fy) €A
fo=F —1
if £, =0

remove(a;, f»,) from A

e Returns at most k — 1 pairs (v,)

Misra-Gries - A generalisation of Majority

Given k, which elements (if any) appear more than m/k times?

M1SRA-GRIES(a1,a0,..-7dm) [

-
-
-
-

set A=10."
For each/i

if a,e A
fa—f +1
else
if |Al<k-1
add (aj,1) to A
else
for (aj,fy) €A
fo=F —1
if £, =0

remove(a;, f»,) from A

- ?‘—,,,. is the estimate for the frequency of token a;J

e Returns at most k — 1 pairs (v,)

* For every (v, #,) € A where the

true frequency is f,,

f,——<f <f,
k

Misra-Gries - A generalisation of Majority

Given k, which elements (if any) appear more than m/k times?

- _[ﬁ,,. is the estimate for the frequency of token a,J

M1SRA-GRIES(a1,a0,..-7dm)

-
-
-
-

set A=10."
For each’/
if @,’/6 A
foy = fo; + 1
else
if |Al<k-1
add (aj,1) to A
else
for (aj,fy) €A
foy = o — 1
if f, =0

remove(aj, f,,) from A

e Returns at most k — 1 pairs (v,)

* For every (v, #,) € A where the

true frequency is f,,

m ~
f,- T <f <f,
L <k <

® Every 1/k-heavy hitter is found.

Misra-Gries - A generalisation of Majority

Given k, which elements (if any) appear more than m/k times?

MISRA—GRIES(al,ag/.//.,r,’é,;,j [
set A=10."
For eaqh/i
if a,e A
é A—f +1
else
if |Al<k-1
add (aj,1) to A
else
for (aj,fy) €A
fo=F —1
if £, =0

remove(a;, f»,) from A

- ?a,. is the estimate for the frequency of token a,J

e Returns at most k — 1 pairs (v,)

* For every (v, #,) € A where the
true frequency is f,,

f,——<f <f,
k

® Every 1/k-heavy hitter is found.

® Some non-heaver hitters might be
reported.

Misra-Gries - A generalisation of Majority

Given k, which elements (if any) appear more than m/k times?

M1SRA-GRIES(a1,a0,..-7dm)

-
-
-
-

set A=10."
For each’/
if g;/e A
foy = fo; + 1
else
if |Al<k-1
add (aj,1) to A
else
for (aj,fy) €A
foy = o — 1
if f, =0

remove(aj, f,,) from A

- _[ﬂ,. is the estimate for the frequency of token a,J

e Returns at most k — 1 pairs (v,)

* For every (v, #,) € A where the
true frequency is f,,

m ~
f,- T <f <f,
L <k <

® Every 1/k-heavy hitter is found.

® Some non-heaver hitters might be
reported.

® Second pass may be needed

Misra-Gries - Worked example

Given k, which elements (if any) appear more than m/k times?

Stream: ACABACBB

MI1SrRA-GRIES (31,32, ...,3m)
bz Em m=8,k=3.

set A =10
For each 1/
if a, €A
fo=Fy +1
else
if |Al<k-1
add (aj,1) to A
else
for (aj, ?a,.) €A
fo = — 1
if f, =0

remove(a;, f,,) from A

Misra-Gries - Worked example

Given k, which elements (if any) appear more than m/k times?

MisrRA-GRIES(31,32,...,3m)
set A =10
For each 1/
if a, €A B
?a,- =?a,-+1 ////
else 7
if [Al<k—-1 /
add (aj,1) to A¥
else
for (aj,fy) €A
fo = — 1
if £, =0

remove(a;, f,,) from A

Stream: ACABACBB
m=28,k=23.

--A-fa=1

Misra-Gries - Worked example

Given k, which elements (if any) appear more than m/k times?

MisrRA-GRIES(31,32,...,3m)
set A =10
For each |/
if a, €A
?a,- = ?a,- +1 z
else //
if [Al<k-1
add (aj,1) to A ¥
else
for (aj,fy) €A
fo = — 1
if £, =0

remove(a;, f,,) from A

Stream: ACABACBB
m=28,k=23.

Ao fa=1
L --Cofa=1fc=1

Misra-Gries - Worked example

Given k, which elements (if any) appear more than m/k times?

MisrRA-GRIES(31,32,...,3m)
set A =10
For each 1/
if a, €A
fo=fy+1 &7 7°
else
if |Al<k-1
add (aj,1) to A
else
for (aj,fy) €A
fo = — 1
if £, =0

remove(a;, f,,) from A

~

Stream: ACABACBB
m=28,k=23.

Ao fa=1
Cofa=1fc=1
\\A—>?A:2,?C:1

Misra-Gries - Worked example

Given k, which elements (if any) appear more than m/k times?

MisrRA-GRIES(31,32,...,3m)
set A =10
For each 1/
if a, €A
fo=Fy +1
else
if |Al<k-1
add (aj,1) to A o=
else ///
for (aj,f,) € A’
fop=Fy — 1>
if £, =0 1

1
remove(a;, f,) from A ¥

Stream: ACABACBB
m=28,k=23.

Ao fa=1
Coha=1fc=1
Ao fa=2fc=1
——7B—>?A:1

1/

1
1
1
1

Misra-Gries - Worked example

Given k, which elements (if any) appear more than m/k times?

MisrRA-GRIES(31,32,...,3m)

set A =10
For each 1/
if a, €A
?aiz?af—i_l R
else ~

if |Al<k—1 \

add (aj,1) to A
else
for (aj, ?a,.) €A
fo = — 1
if f, =0

remove(a;, f,,) from A

Stream: ACABACBB
m=28,k=23.

Ao fa=1
Coha=1fc=1
A= fa=2fc=1
. Bofa=1
\\A—>?A:2

Misra-Gries - Worked example

Given k, which elements (if any) appear more than m/k times?

MisrRA-GRIES(31,32,...,3m)

set A =10
For each 1/
if a, €A
fo = fo; + 1
else
if |Al<k-1
add (aj,1) to A 4----_
else
for (a,-./ ?a,-) €A
fo = — 1
if f, =0

remove(a;, f,,) from A

=~

~

N

Stream: ACABACBB
m=28,k=23.

Ao fa=1
Coha=1fc=1
Ao fa=2fc=1
Bofa=1
. Ao fa=2
Cofa=2fc=1

Misra-Gries - Worked example

Given k, which elements (if any) appear more than m/k times?

MISRA-GRIES(a1,a2,...,3m) Stream: ACABACBEB
m=28,k=23.
set A =10
For each / ~
if 2 € A Azfa=1"
?a,-:?a,-‘i‘l C—ofa=1fc=1
else A—>?A:2,?C:1
if |Al<k-1 =
add (a;,1) to A B_>fA_1
else A—fa=2
fONI' (ai-/fa,-)EA//,___‘\\ C—)?AZQ,?C:1
faf:Nfai_lk \\:B%?A:]-
if £, =0 .
remove(a;, f»,) from A ¥

Misra-Gries - Worked example

Given k, which elements (if any) appear more than m/k times?

MISRA-GRIES (1. 20, ... 2) Stream: ACABACBB
m=28,k=23.
set A =10
For each |/ 7
if 3, € A A—>iA:1~
?a,':?a’-‘i‘l C_>fA:17fC:1
else A—>?A:27?C:1
if [Al<k-1 Fo_
add (aj,1) to A «.__ B—>fA_1
else I A= fa=2
fo~r (ai‘/fa,-)EA B C—>?A:27?C:1
fa,‘:Nfa,'_l \‘\B—>?A:1
if fy; =0 Bofa=17fs=1
remove(a;,?al.) from A —ia=LiB=

Misra-Gries - Space/Time

Given k, which elements (if any) appear more than m/k times?

MisrA-GRIES (a1, an,...,am)
set A =10
For each |
if a, €A
for=Fy +1
else
if |Al<k-1
add (aj,1) to A
else
for (aj, 7‘3,.) €A
fo = — 1
if f, =0

remove(aj, f,,) from A

® Space: k — 1 pairs stored in total

Misra-Gries - Space/Time

Given k, which elements (if any) appear more than m/k times?

MisrA-GRIES (a1, an,...,am)
set A =10
For each |
if a, €A
for=Fy +1
else
if |Al<k-1
add (aj,1) to A
else
for (aj, 7‘3,.) €A
fo = — 1
if f, =0

remove(aj, f,,) from A

® Space: k — 1 pairs stored in total

® O(k(log m+logn)) bits space.

Misra-Gries - Space/Time

Given k, which elements (if any) appear more than m/k times?

MisrA-GRIES (a1, an,...,am)
set A =10
For each |
if a, €A
for=Fy +1
else
if |Al<k-1
add (aj,1) to A
else
for (aj, 7‘3,.) €A
fo = — 1
if f, =0

remove(aj, f,,) from A

® Space: k — 1 pairs stored in total

® O(k(log m+logn)) bits space.

Misra-Gries - Space/Time

Given k, which elements (if any) appear more than m/k times?

MisrA-GRIES (a1, an,...,am)
set A =10
For each |
if a, €A
for=Fy +1
else
if |Al<k-1
add (aj,1) to A
else
for (aj, 7‘3,.) €A
fo = — 1
if f, =0

remove(aj, f,,) from A

® Space: k — 1 pairs stored in total

® O(k(log m+logn)) bits space.

® Running time depends on data
structure used.

Misra-Gries - Space/Time

Given k, which elements (if any) appear more than m/k times?

M1sRA-GRIES (31,32, ..., am) ® Space: k — 1 pairs stored in total
set A =0 ¢ O(k(log m+ logn)) bits space.
For each |
if~ i € a ® Running time depends on data
fo = fa; +1 structure used.
else .
if [Al<k—1 ® Balanced t.>|nary search tr.ee
add (a1, 1) to A O(log n) time per operation.
else
for (aj, lN‘a,.) cA
L= =1
if f, =0

remove(aj, f,,) from A

Misra-Gries - Space/Time

Given k, which elements (if any) appear more than m/k times?

M1isSrRA-GRIES(31,32,...,3m) °

Space: k — 1 pairs stored in total
set A =0 ¢ O(k(log m+ logn)) bits space.

For each |/

if~ i € a ® Running time depends on data
fo = fa +1 structure used.
else .
if [Al<k—1 ® Balanced t.>|nary search tr.ee
add (a1, 1) to A O(log n) time per operation.
else ¢ We can only decrement (or
for (aj,fy) €A remove) if we previously
foo=f —1 incremented. Therefore O(m)
if , =0 operations.

remove(aj, f,,) from A

Misra-Gries - Space/Time

Given k, which elements (if any) appear more than m/k times?

MisrA-GRIES (a1, an,...,am)
set A =10
For each |
if a, €A
foy = fo; + 1
else
if |Al<k-1
add (aj,1) to A
else
for (aj, lN‘a,.) cA
foy = o — 1
if f, =0

remove(aj, f,,) from A

Space: k — 1 pairs stored in total
O(k(log m + log n)) bits space.

Running time depends on data
structure used.

Balanced binary search tree
O(log n) time per operation.

We can only decrement (or
remove) if we previously
incremented. Therefore O(m)
operations.

O(m(log n)) time overall.

Modified Misra-Gries - Analysis

Let's look at a less efficient version for the analysis.

Mop1FIED-MG(a1,a2,...,am)

set A = empty multiset
For each |
if a, € A
add a copy of a; to A
else
if |supp(A)| < k—1
add a; to A
else
add and then delete a;
delete one copy of each
item in A

Modified Misra-Gries - Analysis

Let's look at a less efficient version for the analysis.

Mop1FIED-MG(a1,a2,...,am)

set A = empty multiset
For each |
if a, € A
add a copy of a; to A
else
if |supp(A)| < k—1
add a; to A
else
add and then delete a;
delete one copy of each
item in A

® |supp(A)| is the number of
distinct tokens in A.

Modified Misra-Gries - Analysis

Let's look at a less efficient version for the analysis.

Mop1FIED-MG(a1,a2,...,am)

set A = empty multiset
For each /
if a, € A
add a copy of a; to A
else
if |supp(A)| < k—1
add a; to A
else
add and then delete a;
delete one copy of each
item in A

® |supp(A)| is the number of
distinct tokens in A.

® |dentical except for space usage

Modified Misra-Gries - Analysis

Let's look at a less efficient version for the analysis.

Mop1FIED-MG(a1,a2,...,am)

set A = empty multiset
For each /
if a, € A
add a copy of a; to A
else
if |supp(A)| < k—1
add a; to A
else
add and then delete a;
delete one copy of each
item in A

® |supp(A)| is the number of
distinct tokens in A.

® |dentical except for space usage.

® |tems are deleted in groups of k.

Modified Misra-Gries - Analysis

Let's look at a less efficient version for the analysis.

Mop1FIED-MG(a1,a2,...,am)

set A = empty multiset
For each /
if a, € A
add a copy of a; to A
else
if |supp(A)| < k—1
add a; to A
else
add and then delete a;
delete one copy of each
item in A

|supp(A)| is the number of
distinct tokens in A.

Identical except for space usage.

Items are deleted in groups of k.

Each item can be deleted < %
times.

Misra-Gries - Analysis

STATEMENT FOR MISRA-GRIES

For every (v, ?V) € A where the true frequency is f,,

m -
fv__<fv§fv
P

Misra-Gries - Analysis

STATEMENT FOR MISRA-GRIES

For every (v, ?V) € A where the true frequency is f,,

m ~
f,—— <f <f,
p <

> |tems are deleted in groups of k.

Misra-Gries - Analysis

STATEMENT FOR MISRA-GRIES

For every (v, ?V) € A where the true frequency is f,,

m -
fv__<fv§fv
P

> |tems are deleted in groups of k.

» Each item can therefore be deleted < % times.

Misra-Gries - Analysis

STATEMENT FOR MisrA-GRIES
For every (v, f,) € A where the true frequency is f,,

m ~
fv_*<fv§fv
P

> |tems are deleted in groups of k.
» Each item can therefore be deleted < % times.

» Let a(v) be the number of times v was seen without incrementing
f,. Let b(v) be the number of times f, was decremented.

Misra-Gries - Analysis

STATEMENT FOR MisrA-GRIES
For every (v, f,) € A where the true frequency is f,,

m ~
fv_*<fv§fv
P

> |tems are deleted in groups of k.
» Each item can therefore be deleted < % times.

» Let a(v) be the number of times v was seen without incrementing
f,. Let b(v) be the number of times f, was decremented.

» We now have that f, = f, — a(v) — b(v) = f, — (a(v) + b(v)).

Misra-Gries - Analysis

STATEMENT FOR MisrA-GRIES
For every (v, f,) € A where the true frequency is f,,

m ~
fv_*<fv§fv
P

> |tems are deleted in groups of k.
» Each item can therefore be deleted < % times.

» Let a(v) be the number of times v was seen without incrementing
f,. Let b(v) be the number of times f, was decremented.

» We now have that f, = f, — a(v) — b(v) = f, — (a(v) + b(v)).

» The number of decrements equals a(v) + b(v), therefore
a(v) + b(v) < 7.

Misra-Gries - Analysis

STATEMENT FOR MisrA-GRIES
For every (v, f,) € A where the true frequency is f,,

m ~
fv_*<fv§fv
P

> |tems are deleted in groups of k.
» Each item can therefore be deleted < % times.

» Let a(v) be the number of times v was seen without incrementing
f,. Let b(v) be the number of times f, was decremented.

» We now have that f, = f, — a(v) — b(v) = f, — (a(v) + b(v)).

» The number of decrements equals a(v) + b(v), therefore
a(v) + b(v) < 7.

> Hence f, — 7 < £,

Summary

MisrA-GRIES

The Misra-Gries algorithm uses O(%(log m + log n)) bits of
space to find a set of size at most [%1 that contains every
item of frequency at least em.

Summary

MisrA-GRIES

The Misra-Gries algorithm uses O(%(log m + log n)) bits of
space to find a set of size at most [%1 that contains every
item of frequency at least em.

1. MaJORITY uses O(log m + log n) space and runs in linear time.

Summary

MisrA-GRIES

The Misra-Gries algorithm uses O(%(log m + log n)) bits of
space to find a set of size at most [%1 that contains every
item of frequency at least em.

1. MaJORITY uses O(log m + log n) space and runs in linear time.

2. If there is an item that occurs more than m/2 times the
MAJORITY algorithm will output it.

Summary

MisrA-GRIES

The Misra-Gries algorithm uses O(%(logm + logn)) bits of
space to find a set of size at most [%1 that contains every
item of frequency at least em.

1. MaJORITY uses O(log m + log n) space and runs in linear time.

2. If there is an item that occurs more than m/2 times the
MAJORITY algorithm will output it.

3. With a second pass we can check if there is a majority in the
stream

Summary

MisrA-GRIES

The Misra-Gries algorithm uses O(%(logm + logn)) bits of
space to find a set of size at most [%1 that contains every
item of frequency at least em.

1. MaJORITY uses O(log m + log n) space and runs in linear time.

2. If there is an item that occurs more than m/2 times the
MAJORITY algorithm will output it.

3. With a second pass we can check if there is a majority in the
stream

4. MiSrRA-GRIES uses O(k(log m + log n)) space and runs in
O(mlog m) time.

Summary

MisrA-GRIES

The Misra-Gries algorithm uses O(%(logm + logn)) bits of
space to find a set of size at most [%1 that contains every
item of frequency at least em.

1. MaJORITY uses O(log m + log n) space and runs in linear time.

2. If there is an item that occurs more than m/2 times the
MAJORITY algorithm will output it.

3. With a second pass we can check if there is a majority in the
stream

4. MiSrRA-GRIES uses O(k(log m + log n)) space and runs in
O(mlog m) time.

5. It will output all tokens that occur more than m/k times but may
output others as well.

Summary

MisrA-GRIES

The Misra-Gries algorithm uses O(%(logm + logn)) bits of
space to find a set of size at most [%1 that contains every
item of frequency at least em.

1. MaJORITY uses O(log m + log n) space and runs in linear time.

2. If there is an item that occurs more than m/2 times the
MAJORITY algorithm will output it.

3. With a second pass we can check if there is a majority in the
stream

4. MiSrRA-GRIES uses O(k(log m + log n)) space and runs in
O(mlog m) time.

5. It will output all tokens that occur more than m/k times but may
output others as well.

6. With a second pass we can remove all the undesired tokens.

