Exercise Sheet 6
 COMS10007 Algorithms 2019/2020

28.04.2020

Reminder: $\log n$ denotes the binary \log arithm, i.e., $\log n=\log _{2} n$.

1 Recurrences: Substitution Method

1. Consider the following recurrence:

$$
T(1)=1 \text { and } T(n)=T(n-1)+n
$$

Show that $T(n) \in O\left(n^{2}\right)$ using the substitution method.
2. Consider the following recurrence:

$$
T(1)=1 \text { and } T(n)=T(\lceil n / 2\rceil)+1
$$

Show that $T(n) \in O(\log n)$ using the substitution method.
Hint: Use the inequality $\lceil n / 2\rceil \leq \frac{n}{\sqrt{2}}=\frac{n}{2^{\frac{1}{2}}}$, which holds for all $n \geq 2$. Use $n=2$ as your base case.

2 Search in a Sorted Matrix (difficult!)

We are given an n-by- n integer matrix A that is sorted both row- and column-wise, i.e., every row is sorted in non-decreasing order from left to right, and every column is sorted in nondecreasing order from top to bottom. Give a divide-and-conquer algorithm that answers the question:
"Given an integer x, does A contain x ?"
What is the runtime of your algorithm?

