Exercise Sheet 3
 COMS10007 Algorithms 2019/2020

18.02.2020

Reminder: $\log n$ denotes the binary $\operatorname{logarithm,~i.e.,~} \log n=\log _{2} n$.

1 Proofs by Induction

Prove the following statements by induction:

1. For every integer $n \geq 0$, the following holds:

$$
\sum_{i=0}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

2. For every $n \geq 1$, the following holds:

$$
11^{n}-6 \text { is divisible by } 5 .
$$

3. Consider the following sequence: $s_{1}=1, s_{2}=2, s_{3}=3$, and $s_{n}=s_{n-1}+s_{n-2}+s_{n-3}$, for every $n \geq 4$. Prove that the following holds:

$$
s_{n} \leq 2^{n}
$$

2 Loop Invariant

Prove that the stated invariant holds throughout the execution of the loop (using the Initialization, Maintenance, Termination approach discussed in the lectures):

```
Algorithm 1 Algorithm \(\mathcal{A}\)
Require: Array \(A\) of length \(n(n \geq 2)\)
    \(S \leftarrow A[0]-A[1]\)
    for \(i \leftarrow 1 \ldots n-2\) do
        \(S \leftarrow S+A[i]-A[i+1]\)
    end for
    return \(S\)
```


Invariant:

At the beginning of iteration $i, S=A[0]-A[i]$ holds.
What does the algorithm compute?

3 Insertionsort

What is the runtime (in Θ-notation) of Insertionsort when executed on the following arrays of lengths n :

1. $1,2,3,4, \ldots, n-1, n$
2. $n, n-1, n-2, \ldots, 2,1$
3. The array A such that $A[i]=1$ if $i \in\{1,2,4,8,16, \ldots\}$ (i.e., when i is a power of two) and $A[i]=i$ otherwise.

4 Runtime Analysis

```
Algorithm 2
Require: Integer \(n \geq 2\)
    \(x \leftarrow 0\)
    \(i \leftarrow n\)
    while \(i \geq 2\) do
        \(j \leftarrow\left\lceil n^{1 / 4}\right\rceil \cdot i\)
        while \(j \geq i\) do
            \(x \leftarrow x+1\)
            \(j \leftarrow j-10\)
        end while
        \(i \leftarrow\lfloor i / \sqrt{n}\rfloor\)
    end while
    return \(x\)
```

Determine the runtime of Algorithm 3 in Θ-notation.

