Exercise Sheet 3 COMS10007 Algorithms 2019/2020

18.02.2020

Reminder: $\log n$ denotes the binary logarithm, i.e., $\log n = \log_2 n$.

1 Proofs by Induction

Prove the following statements by induction:

1. For every integer $n \ge 0$, the following holds:

$$\sum_{i=0}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

2. For every $n \ge 1$, the following holds:

 $11^n - 6$ is divisible by 5.

3. Consider the following sequence: $s_1 = 1, s_2 = 2, s_3 = 3$, and $s_n = s_{n-1} + s_{n-2} + s_{n-3}$, for every $n \ge 4$. Prove that the following holds:

$$s_n \leq 2^n$$

2 Loop Invariant

Prove that the stated invariant holds throughout the execution of the loop (using the Initialization, Maintenance, Termination approach discussed in the lectures):

Algorithm 1 Algorithm \mathcal{A}

Require: Array A of length $n \ (n \ge 2)$
1: $S \leftarrow A[0] - A[1]$
2: for $i \leftarrow 1 \dots n - 2$ do
3: $S \leftarrow S + A[i] - A[i+1]$
4: end for
5 return S

Invariant:

At the beginning of iteration i, S = A[0] - A[i] holds.

What does the algorithm compute?

3 Insertionsort

What is the runtime (in Θ -notation) of Insertionsort when executed on the following arrays of lengths n:

- 1. $1, 2, 3, 4, \ldots, n-1, n$
- 2. $n, n-1, n-2, \ldots, 2, 1$
- 3. The array A such that A[i] = 1 if $i \in \{1, 2, 4, 8, 16, ...\}$ (i.e., when i is a power of two) and A[i] = i otherwise.

4 Runtime Analysis

 Algorithm 2

 Require: Integer $n \ge 2$
 $x \leftarrow 0$
 $i \leftarrow n$

 while $i \ge 2$ do

 $j \leftarrow \lceil n^{1/4} \rceil \cdot i$

 while $j \ge i$ do

 $x \leftarrow x + 1$
 $j \leftarrow \lfloor i / \sqrt{n} \rfloor$

 end while

 $i \leftarrow \lfloor i / \sqrt{n} \rfloor$

 end while

 return x

Determine the runtime of Algorithm 3 in Θ -notation.