
Exercise Sheet 1

COMS10007 Algorithms 2019/2020

04.02.2020

Reminder: log n denotes the binary logarithm, i.e., log n = log2 n.

1 O-notation: Part I

Give formal proofs of the following statements using the definition of Big-O from the lecture.

1. 10 ∈ O(1) .

2. 5n ∈ O(n) .

3. n2 + 10n ∈ O(1
10n

3) .

4.
∑n

i=1 i ∈ O(4n2) .

2 Racetrack Principle

1. Use the racetrack principle to prove the following statement:

n ≤ en holds for every n ≥ 1 .

2. Use the racetrack principle and determine a value n0 such that

2

log n
≤ 1

log logn
holds for every n ≥ n0 . (Difficult!)

Hint: Transform the inequality and eliminate the log-function from one side of the in-
equality before applying the racetrack principle.
Recall that (log n)′ = 1

n ln(2) . The inequality ln(2) ≥ 1/2 may also be useful.

3 O-notation: Part II

Give formal proofs of the following statements using the definition of Big-O from the lecture.

1. f ∈ O(h1), g ∈ O(h2) then f + g ∈ O(h1 + h2) .

2. f ∈ O(h1), g ∈ O(h2) then f · g ∈ O(h1 · h2) .

3. 2n ∈ O(n!)

1

4 Fast Peak Finding

Consider the following variant of Fast-Peak-Finding where the “≥” sign in the condition in
instruction 4 is replaced by a “<” sign:

1. if A is of length 1 then return 0

2. if A is of length 2 then compare A[0] and A[1] and return position of larger
element

3. if A[bn/2c] is a peak then return bn/2c

4. Otherwise, if A[bn/2c − 1] <<< A[bn/2c] then
return Fast-Peak-Finding(A[0, bn/2c − 1])

5. else
return bn/2c+ 1+ Fast-Peak-Finding(A[bn/2c+ 1, n− 1])

1. Give an example instance of length 8 on which this algorithm fails.

2. Consider now the correct version of Fast-Peak-Finding given in the lecture. Suppose
that we replaced the bn/2c by bn/10c throughout the algorithm. Would the algorithm
still work? Would it be more or less efficient?

5 Finding Two Peaks (optional and very difficult!)

We are given an integer array A of length n that has exactly two peaks. The goal is to find
both peaks. We could do this as follows: Simply go through the array with a loop and check
every array element. This strategy has a runtime of O(n) (requires c ·n array accesses, for some
constant c). Is there a faster algorithm for this problem (e.g. similar to Fast-Peak-Finding)?
If yes, give such an algorithm. If no, justify why there is no such algorithm.

2

