Lecture 16: Dynamic Programming - Pole Cutting COMS10007 - Algorithms

Dr. Christian Konrad

21.04.2020

Pole Cutting

Pole-cutting:

- Given is a pole of length n

- The pole can be cut into multiple pieces of integral lengths
- A pole of length i is sold for price $p(i)$, for some function p

Example:

length i	1	2	3	4	5	6	7	8	9	10
price $p(i)$	1	5	8	9	10	17	17	20	24	30

Pole Cutting (2)

Problem: Pole-Cutting
(1) Input: Price table p_{i}, for every $i \geq 1$, length n of initial pole
(2) Output: Maximum revenue r_{n} obtainable by cutting pole into smaller pieces

How many ways of cutting the pole are there?

Pole Cutting (3)

$$
\text { There are } 2^{n-1} \text { ways to cut a pole of length } n \text {. }
$$

Proof.

There are $n-1$ positions where the pole can be cut. For each position we either cut or we don't. This gives 2^{n-1} possibilities. \square

Problem:

- Find best out of 2^{n-1} possibilities
- We could disregard similar cuts, but we would still have an exponential number of possibilities
- A fast algorithm cannot try out all possibilities

Pole Cutting (4)

Notation

$$
7=2+2+3
$$

means we cut a pole of length 7 into pieces of lengths 2,2 and 3

Optimal Cut

- Suppose the optimal cut uses k pieces

$$
n=i_{1}+i_{2}+\cdots+i_{k}
$$

- Optimal revenue r_{n} :

$$
r_{n}=p\left(i_{1}\right)+p\left(i_{2}\right)+\cdots+p\left(i_{k}\right)
$$

Pole Cutting (5)

What are the optimal revenues r_{i} ?

length i	1	2	3	4	5	6	7	8	9
10									
price $p(i)$	1	5	8	9	10	17	17	20	24
30									
r_{1}	$=1$		$1=1$						
r_{2}	$=5$		$2=2$						
r_{3}	$=8$		$3=3$						
r_{4}	$=10$		$4=2+2$						
r_{5}	$=13$		$5=2+3$						
r_{6}	$=17$		$6=6$						
r_{7}	$=18$		$7=2+2+3$						
r_{8}	$=22$	$8=2+6$							
r_{9}	$=25$	$9=3+6$							
r_{10}	$=30$	$10=10$							

Optimal Substructure

Optimal Substructure

- Consider an optimal solution to input length n

$$
n=i_{1}+i_{2}+\cdots+i_{k} \text { for some } k
$$

- Then:

$$
n-i_{1}=i_{2}+\cdots+i_{k}
$$

is an optimal solution to the problem of size $n-i_{1}$

Computing Optimal Revenue r_{n} :

$$
r_{n}=\max \left\{p_{n}, r_{1}+r_{n-1}, r_{2}+r_{n-2}, \ldots, r_{n-1}+r_{1}\right\}
$$

- p_{n} corresponds to the situation of no cut at all
- $r_{i}+r_{n-i}$: initial cut into two pieces of sizes i and $n-i$

Pole Cutting: Dynamic Programming Formulation

Simpler Recursive Formulation: Let $r_{0}=0$

$$
r_{n}=\max _{1 \leq i \leq n}\left(p_{i}+r_{n-i}\right) .
$$

Observe: Only one subproblem in this formulation
Example: $n=4$

$$
r_{n}=\max \left\{p_{1}+r_{3}, p_{2}+r_{2}, p_{3}+r_{1}, p_{4}+r_{0}\right\}
$$

$p_{1}+r_{3}$	$p_{2}+r_{2}$	$p_{3}+r_{1}$	$p_{4}+r_{0}$	
$\square \square \square$	\square	\square	\square	
\square	\square	\square	(\square)	

Recursive Top-down Implementation

Recall:

$$
r_{n}=\max _{1 \leq i \leq n}\left(p_{i}+r_{n-i}\right) \text { and } r_{0}=0 .
$$

Direct Implementation:
Require: Integer n, Array p of length n with prices if $n=0$ then
return 0
$q \leftarrow-\infty$ for $i=1 \ldots n$ do $q \leftarrow \max \{q, p[i]+\operatorname{CuT}-\operatorname{Pole}(p, n-i)\}$ return q

Algorithm Cut-Pole (p, n)
How efficient is this algorithm?

Recursion Tree for Cut-Pole

Example: $n=5$

Number Recursive Calls: $T(n)$

$$
T(n)=1+\sum_{j=0}^{n-1} T(j) \text { and } T(0)=1
$$

Solving Recurrence

How to Solve this Recurrence?

$$
T(n)=1+\sum_{j=0}^{n-1} T(j) \text { and } T(0)=1
$$

- Substitution Method: Using guess $T(n)=O\left(c^{n}\right)$, for some c
- Trick: compute $T(n)-T(n-1)$

$$
\begin{aligned}
T(n)-T(n-1) & =1+\sum_{j=0}^{n-1} T(j)-\left(1+\sum_{j=0}^{n-2} T(j)\right) \\
& =T(n-1), \text { hence: } \\
T(n) & =2 T(n-1) .
\end{aligned}
$$

This implies $T(i)=2^{i}$.

Discussion

Runtime of Cut-Pole

- Recursion tree has 2^{n} nodes
- Each function call takes time $O(n)$ (for-loop)
- Runtime of Cut-Pole is therefore $O\left(n 2^{n}\right)$. $\left(O\left(2^{n}\right)\right.$ can also be argued)

What can we do better?

- Observe: We compute solutions to subproblems many times
- Avoid this by storing solutions to subproblems in a table!
- This is a key feature of dynamic programming

Implementing the Dynamic Programming Approach

Top-down with memoization

- When computing r_{i}, store r_{i} in a table T (of size n)
- Before computing r_{i} again, check in T whether r_{i} has previously been computed

Bottom-up

- Fill table T from smallest to largest index
- No recursive calls are needed for this

Top-down Approach

Require: Integer n, Array p of length n with prices Let $r[0 \ldots n]$ be a new array for $i=0 \ldots n$ do $r[i] \leftarrow-\infty$ return Memoized-Cut-Pole-Aux (p, n, r) Algorithm Memoized-Cut-Pole (p, n)

- Prepare a table r of size n
- Initialize all elements of r with $-\infty$
- Actual work is done in Memoized-Cut-Pole-Aux, table r is passed on to Memoized-Cut-Pole-Aux

Top-down Approach (2)

Require: Integer n, array p of length n with prices, array r of revenues
if $r[n] \geq 0$ then return $r[n]$
if $n=0$ then
$q \leftarrow 0$
else

$$
\begin{aligned}
& \begin{aligned}
& q \leftarrow-\infty \\
& \text { for } i=1 \ldots n \text { do } \\
& \quad q \leftarrow \max \{q, p[i]+\operatorname{MemoIzed}-\operatorname{Cut}-\operatorname{PoLE}-\operatorname{Aux}(p, n- \\
&\quad i, r)\} \\
& r[n] \leftarrow q \\
& \text { return } q
\end{aligned}
\end{aligned}
$$

Algorithm Memoized-Cut-Pole-Aux (p, n, r)
Observe: If $r[n] \geq 0$ then $r[n]$ has been computed previously

Bottom-up Approach

Require: Integer n, array p of length n with prices
Let $r[0 \ldots n]$ be a new array
$r[0] \leftarrow 0$
for $j=1 \ldots n$ do
$q \leftarrow-\infty$
for $i=1 \ldots j$ do
$q \leftarrow \max \{q, p[i]+r[j-i]\}$
$r[j] \leftarrow q$
return $r[n]$
Algorithm Bottom-Up-Cut-Pole (p, n)
Runtime: Two nested for-loops
$\sum_{j=1}^{n} \sum_{i=1}^{j} O(1)=O(1) \sum_{j=1}^{n} \sum_{i=1}^{j} 1=O(1) \sum_{j=1}^{n} j=O(1) \frac{n(n+1)}{2}=O\left(n^{2}\right)$.

Conclusion

Runtime of Top-down Approach $O\left(n^{2}\right)$
(please think about this!)

Dynamic Programming

- Solves a problem by combining subproblems
- Subproblems are solved at most once, store solutions in table
- If a problem exhibits optimal substructure then dynamic programming is often the right choice
- Top-down and bottom-up approaches have the same runtime

