Solving Recurrences II COMS10007 2020, Lecture 14

Dr. John Lapinskas
(substituting for Dr. Christian Konrad)

March 18th 2020

The recursion tree method

This lecture we'll ignore O-notation and divisibility issues, and focus on examples of the recurrences themselves. Consider the recurrence

$$
T(1)=1, \quad T(n)=3 T(n / 4)+n / 2, \quad n \text { is a power of } 4 .
$$

Step 1: Use the recursion tree method to get a good guess at a solution. As with the mergesort analysis, we view this as a tree.

Each recursive invocation corresponds to a child node - so the root has three children, each of which has three children, and so on.

Each node gets labelled with the non-recursive running time at that step, and then $T(n)$ is the sum of all the labels in the tree.

A concrete example

$$
T(1)=1, \quad T(n)=3 T(n / 4)+n / 2, \quad n \text { is a power of } 4 .
$$

$n=64$

$$
n=16
$$

$$
T(64)=3 T(16)+32
$$

A concrete example

$$
T(1)=1, \quad T(n)=3 T(n / 4)+n / 2, \quad n \text { is a power of } 4 .
$$

$$
n=64
$$

$$
n=16
$$

$$
n=4
$$

$$
T(64)=3 T(16)+32=9 T(4)+3 \cdot 8+32
$$

A concrete example

$$
T(1)=1, \quad T(n)=3 T(n / 4)+n / 2, \quad n \text { is a power of } 4 .
$$

$$
\begin{aligned}
& n=64 \\
& n=16 \\
& n=4
\end{aligned}
$$

$$
T(64)=9 T(4)+3 \cdot 8+32
$$

A concrete example

$$
T(1)=1, \quad T(n)=3 T(n / 4)+n / 2, \quad n \text { is a power of } 4 .
$$

$$
\begin{aligned}
& n=64 \\
& n=16
\end{aligned}
$$

$$
n=4
$$

$$
n=1
$$

$$
T(64)=9 T(4)+3 \cdot 8+32=27 T(1)+9 \cdot 2+3 \cdot 8+32
$$

A concrete example

$$
T(1)=1, \quad T(n)=3 T(n / 4)+n / 2, \quad n \text { is a power of } 4 .
$$

$$
\begin{aligned}
& n=64 \\
& n=16 \\
& n=4 \\
& n=1
\end{aligned}
$$

$$
T(64)=27 T(1)+9 \cdot 2+3 \cdot 8+32
$$

A concrete example

$$
T(1)=1, \quad T(n)=3 T(n / 4)+n / 2, \quad n \text { is a power of } 4 .
$$

$$
n=64
$$

$$
n=16
$$

$$
n=4
$$

$$
n=1
$$

[All 1's]
$T(64)=27 T(1)+9 \cdot 2+3 \cdot 8+32=27 \cdot \mathbf{1}+9 \cdot 2+3 \cdot 8+32$

A concrete example

$$
T(1)=1, \quad T(n)=3 T(n / 4)+n / 2, \quad n \text { is a power of } 4 .
$$

$$
T(64)=27 \cdot 1+9 \cdot 2+3 \cdot 8+32=101 .
$$

The general case

$$
T(1)=1, \quad T(n)=3 T(n / 4)+n / 2, \quad n \text { is a power of } 4 .
$$

Except for the bottom, level i has 3^{i-1} nodes, each with cost $n /\left(2 \cdot 4^{i-1}\right)$.

The general case

$$
T(1)=1, \quad T(n)=3 T(n / 4)+n / 2, \quad n \text { is a power of } 4 .
$$

Except for the bottom, level i has 3^{i-1} nodes, each with cost $n /\left(2 \cdot 4^{i-1}\right)$. Let $\#($ levels $)=t$. Then $n / 4^{t-1}=1$, so we have $t=1+\log _{4} n$.

$$
T(1)=1, \quad T(n)=3 T(n / 4)+n / 2, \quad n \text { is a power of } 4 .
$$

There are $1+\log _{4} n$ levels in total.
For $i \leq \log _{4} n$, level i has 3^{i-1} nodes with time cost $n /\left(2 \cdot 4^{i-1}\right)$ each.
Level $1+\log _{4} n$ has $3^{\log _{4} n}$ nodes with time cost 1 each.
$T(n)$ is the total time cost over the whole tree, so

$$
T(n)=\sum_{i=1}^{\log _{4} n}\left(\frac{3}{4}\right)^{i-1} \frac{n}{2}+3^{\log _{4} n}
$$

$$
T(1)=1, \quad T(n)=3 T(n / 4)+n / 2, \quad n \text { is a power of } 4 .
$$

There are $1+\log _{4} n$ levels in total.
For $i \leq \log _{4} n$, level i has 3^{i-1} nodes with time cost $n /\left(2 \cdot 4^{i-1}\right)$ each.
Level $1+\log _{4} n$ has $3^{\log _{4} n}$ nodes with time cost 1 each.
$T(n)$ is the total time cost over the whole tree, so

$$
T(n)=\sum_{i=1}^{\log _{4} n}\left(\frac{3}{4}\right)^{i-1} \frac{n}{2}+3^{\log _{4} n}
$$

Summing the geometric series gives

$$
\sum_{i=1}^{\log _{4} n}\left(\frac{3}{4}\right)^{i-1} \frac{n}{2}
$$

$$
T(1)=1, \quad T(n)=3 T(n / 4)+n / 2, \quad n \text { is a power of } 4 .
$$

There are $1+\log _{4} n$ levels in total.
For $i \leq \log _{4} n$, level i has 3^{i-1} nodes with time cost $n /\left(2 \cdot 4^{i-1}\right)$ each.
Level $1+\log _{4} n$ has $3^{\log _{4} n}$ nodes with time cost 1 each.
$T(n)$ is the total time cost over the whole tree, so

$$
T(n)=\sum_{i=1}^{\log _{4} n}\left(\frac{3}{4}\right)^{i-1} \frac{n}{2}+3^{\log _{4} n}
$$

Summing the geometric series gives

$$
\sum_{i=1}^{\log _{4} n}\left(\frac{3}{4}\right)^{i-1} \frac{n}{2}=\frac{n}{2} \cdot \sum_{i=1}^{\log _{4} n}\left(\frac{3}{4}\right)^{i-1}
$$

$$
T(1)=1, \quad T(n)=3 T(n / 4)+n / 2, \quad n \text { is a power of } 4 .
$$

There are $1+\log _{4} n$ levels in total.
For $i \leq \log _{4} n$, level i has 3^{i-1} nodes with time cost $n /\left(2 \cdot 4^{i-1}\right)$ each.
Level $1+\log _{4} n$ has $3^{\log _{4} n}$ nodes with time cost 1 each.
$T(n)$ is the total time cost over the whole tree, so

$$
T(n)=\sum_{i=1}^{\log _{4} n}\left(\frac{3}{4}\right)^{i-1} \frac{n}{2}+3^{\log _{4} n}
$$

Summing the geometric series gives

$$
\sum_{i=1}^{\log _{4} n}\left(\frac{3}{4}\right)^{i-1} \frac{n}{2}=\frac{n}{2} \cdot \sum_{i=1}^{\log _{4} n}\left(\frac{3}{4}\right)^{i-1} \leq \frac{n}{2} \cdot \sum_{i=0}^{\infty}\left(\frac{3}{4}\right)^{i}
$$

$$
T(1)=1, \quad T(n)=3 T(n / 4)+n / 2, \quad n \text { is a power of } 4 .
$$

There are $1+\log _{4} n$ levels in total.
For $i \leq \log _{4} n$, level i has 3^{i-1} nodes with time cost $n /\left(2 \cdot 4^{i-1}\right)$ each.
Level $1+\log _{4} n$ has $3^{\log _{4} n}$ nodes with time cost 1 each.
$T(n)$ is the total time cost over the whole tree, so

$$
T(n)=\sum_{i=1}^{\log _{4} n}\left(\frac{3}{4}\right)^{i-1} \frac{n}{2}+3^{\log _{4} n}
$$

Summing the geometric series gives

$$
\sum_{i=1}^{\log _{4} n}\left(\frac{3}{4}\right)^{i-1} \frac{n}{2}=\frac{n}{2} \cdot \sum_{i=1}^{\log _{4} n}\left(\frac{3}{4}\right)^{i-1} \leq \frac{n}{2} \cdot \sum_{i=0}^{\infty}\left(\frac{3}{4}\right)^{i}=\frac{n}{2} \cdot O(1)
$$

$$
T(1)=1, \quad T(n)=3 T(n / 4)+n / 2, \quad n \text { is a power of } 4 .
$$

There are $1+\log _{4} n$ levels in total.
For $i \leq \log _{4} n$, level i has 3^{i-1} nodes with time cost $n /\left(2 \cdot 4^{i-1}\right)$ each.
Level $1+\log _{4} n$ has $3^{\log _{4} n}$ nodes with time cost 1 each.
$T(n)$ is the total time cost over the whole tree, so

$$
T(n)=\sum_{i=1}^{\log _{4} n}\left(\frac{3}{4}\right)^{i-1} \frac{n}{2}+3^{\log _{4} n}
$$

Summing the geometric series gives

$$
\sum_{i=1}^{\log _{4} n}\left(\frac{3}{4}\right)^{i-1} \frac{n}{2}=\frac{n}{2} \cdot \sum_{i=1}^{\log _{4} n}\left(\frac{3}{4}\right)^{i-1} \leq \frac{n}{2} \cdot \sum_{i=0}^{\infty}\left(\frac{3}{4}\right)^{i}=\frac{n}{2} \cdot O(1)=O(n) .
$$

$$
T(1)=1, \quad T(n)=3 T(n / 4)+n / 2, \quad n \text { is a power of } 4 .
$$

There are $1+\log _{4} n$ levels in total.
For $i \leq \log _{4} n$, level i has 3^{i-1} nodes with time cost $n /\left(2 \cdot 4^{i-1}\right)$ each.
Level $1+\log _{4} n$ has $3^{\log _{4} n}$ nodes with time cost 1 each.
$T(n)$ is the total time cost over the whole tree, so

$$
T(n)=\sum_{i=1}^{\log _{4} n}\left(\frac{3}{4}\right)^{i-1} \frac{n}{2}+3^{\log _{4} n}
$$

Summing the geometric series gives

$$
\sum_{i=1}^{\log _{4} n}\left(\frac{3}{4}\right)^{i-1} \frac{n}{2}=\frac{n}{2} \cdot \sum_{i=1}^{\log _{4} n}\left(\frac{3}{4}\right)^{i-1} \leq \frac{n}{2} \cdot \sum_{i=0}^{\infty}\left(\frac{3}{4}\right)^{i}=\frac{n}{2} \cdot O(1)=O(n) .
$$

And we have

$$
3^{\log _{4} n}
$$

$$
T(1)=1, \quad T(n)=3 T(n / 4)+n / 2, \quad n \text { is a power of } 4 .
$$

There are $1+\log _{4} n$ levels in total.
For $i \leq \log _{4} n$, level i has 3^{i-1} nodes with time cost $n /\left(2 \cdot 4^{i-1}\right)$ each.
Level $1+\log _{4} n$ has $3^{\log _{4} n}$ nodes with time cost 1 each.
$T(n)$ is the total time cost over the whole tree, so

$$
T(n)=\sum_{i=1}^{\log _{4} n}\left(\frac{3}{4}\right)^{i-1} \frac{n}{2}+3^{\log _{4} n}
$$

Summing the geometric series gives

$$
\sum_{i=1}^{\log _{4} n}\left(\frac{3}{4}\right)^{i-1} \frac{n}{2}=\frac{n}{2} \cdot \sum_{i=1}^{\log _{4} n}\left(\frac{3}{4}\right)^{i-1} \leq \frac{n}{2} \cdot \sum_{i=0}^{\infty}\left(\frac{3}{4}\right)^{i}=\frac{n}{2} \cdot O(1)=O(n) .
$$

And we have

$$
3^{\log _{4} n}=2^{\log (3) \cdot \log _{4}(n)}
$$

$$
T(1)=1, \quad T(n)=3 T(n / 4)+n / 2, \quad n \text { is a power of } 4 .
$$

There are $1+\log _{4} n$ levels in total.
For $i \leq \log _{4} n$, level i has 3^{i-1} nodes with time cost $n /\left(2 \cdot 4^{i-1}\right)$ each.
Level $1+\log _{4} n$ has $3^{\log _{4} n}$ nodes with time cost 1 each.
$T(n)$ is the total time cost over the whole tree, so

$$
T(n)=\sum_{i=1}^{\log _{4} n}\left(\frac{3}{4}\right)^{i-1} \frac{n}{2}+3^{\log _{4} n}
$$

Summing the geometric series gives

$$
\sum_{i=1}^{\log _{4} n}\left(\frac{3}{4}\right)^{i-1} \frac{n}{2}=\frac{n}{2} \cdot \sum_{i=1}^{\log _{4} n}\left(\frac{3}{4}\right)^{i-1} \leq \frac{n}{2} \cdot \sum_{i=0}^{\infty}\left(\frac{3}{4}\right)^{i}=\frac{n}{2} \cdot O(1)=O(n) .
$$

And we have

$$
3^{\log _{4} n}=2^{\log (3) \cdot \log _{4}(n)}=2^{\log (3) \cdot \frac{\log (n)}{\log (4)}}
$$

$$
T(1)=1, \quad T(n)=3 T(n / 4)+n / 2, \quad n \text { is a power of } 4 .
$$

There are $1+\log _{4} n$ levels in total.
For $i \leq \log _{4} n$, level i has 3^{i-1} nodes with time cost $n /\left(2 \cdot 4^{i-1}\right)$ each.
Level $1+\log _{4} n$ has $3^{\log _{4} n}$ nodes with time cost 1 each.
$T(n)$ is the total time cost over the whole tree, so

$$
T(n)=\sum_{i=1}^{\log _{4} n}\left(\frac{3}{4}\right)^{i-1} \frac{n}{2}+3^{\log _{4} n}
$$

Summing the geometric series gives

$$
\sum_{i=1}^{\log _{4} n}\left(\frac{3}{4}\right)^{i-1} \frac{n}{2}=\frac{n}{2} \cdot \sum_{i=1}^{\log _{4} n}\left(\frac{3}{4}\right)^{i-1} \leq \frac{n}{2} \cdot \sum_{i=0}^{\infty}\left(\frac{3}{4}\right)^{i}=\frac{n}{2} \cdot O(1)=O(n)
$$

And we have

$$
3^{\log _{4} n}=2^{\log (3) \cdot \log 44}(n)=2^{\log (3) \cdot \frac{\log (n)}{\log (4)}}=n^{\frac{\log (3)}{\log (4)}}
$$

$$
T(1)=1, \quad T(n)=3 T(n / 4)+n / 2, \quad n \text { is a power of } 4 .
$$

There are $1+\log _{4} n$ levels in total.
For $i \leq \log _{4} n$, level i has 3^{i-1} nodes with time cost $n /\left(2 \cdot 4^{i-1}\right)$ each.
Level $1+\log _{4} n$ has $3^{\log _{4} n}$ nodes with time cost 1 each.
$T(n)$ is the total time cost over the whole tree, so

$$
T(n)=\sum_{i=1}^{\log _{4} n}\left(\frac{3}{4}\right)^{i-1} \frac{n}{2}+3^{\log _{4} n}
$$

Summing the geometric series gives

$$
\sum_{i=1}^{\log _{4} n}\left(\frac{3}{4}\right)^{i-1} \frac{n}{2}=\frac{n}{2} \cdot \sum_{i=1}^{\log _{4} n}\left(\frac{3}{4}\right)^{i-1} \leq \frac{n}{2} \cdot \sum_{i=0}^{\infty}\left(\frac{3}{4}\right)^{i}=\frac{n}{2} \cdot O(1)=O(n) .
$$

And we have

$$
3^{\log _{4} n}=2^{\log (3) \cdot \log _{4}(n)}=2^{\log (3) \cdot \frac{\log (n)}{\log (4)}}=n^{\frac{\log (3)}{\log (4)}}=o(n)
$$

$$
T(1)=1, \quad T(n)=3 T(n / 4)+n / 2, \quad n \text { is a power of } 4 .
$$

There are $1+\log _{4} n$ levels in total.
For $i \leq \log _{4} n$, level i has 3^{i-1} nodes with time cost $n /\left(2 \cdot 4^{i-1}\right)$ each.
Level $1+\log _{4} n$ has $3^{\log _{4} n}$ nodes with time cost 1 each.
$T(n)$ is the total time cost over the whole tree, so

$$
T(n)=\sum_{i=1}^{\log _{4} n}\left(\frac{3}{4}\right)^{i-1} \frac{n}{2}+3^{\log _{4} n}
$$

Summing the geometric series gives

$$
\sum_{i=1}^{\log _{4} n}\left(\frac{3}{4}\right)^{i-1} \frac{n}{2}=\frac{n}{2} \cdot \sum_{i=1}^{\log _{4} n}\left(\frac{3}{4}\right)^{i-1} \leq \frac{n}{2} \cdot \sum_{i=0}^{\infty}\left(\frac{3}{4}\right)^{i}=\frac{n}{2} \cdot O(1)=O(n) .
$$

And we have

$$
3^{\log _{4} n}=2^{\log (3) \cdot \log _{4}(n)}=2^{\log (3) \cdot \frac{\log (n)}{\log (4)}}=n^{\frac{\log (3)}{\log (4)}}=o(n) .
$$

So overall, we expect $T(n)=O(n)$. In other words, the root dominates.

Formal proof via substitution

$$
T(1)=1, \quad T(n)=3 T(n / 4)+n / 2, \quad n \text { is a power of } 4 .
$$

Guess: $T(n) \leq C n$ for all $n \geq 1$ (C to be determined).
Now that we have a good guess, proving it formally is a standard induction.

Formal proof via substitution

$$
T(1)=1, \quad T(n)=3 T(n / 4)+n / 2, \quad n \text { is a power of } 4 .
$$

Guess: $T(n) \leq C n$ for all $n \geq 1$ (C to be determined).
Now that we have a good guess, proving it formally is a standard induction. Base case $\boldsymbol{n}=\mathbf{1}$: We have $T(1)=1 \leq C \cdot 1$ whenever $\boldsymbol{C} \geq \mathbf{1}$.

Formal proof via substitution

$$
T(1)=1, \quad T(n)=3 T(n / 4)+n / 2, \quad n \text { is a power of } 4 .
$$

Guess: $T(n) \leq C n$ for all $n \geq 1$ (C to be determined).
Now that we have a good guess, proving it formally is a standard induction.
Base case $\boldsymbol{n}=\mathbf{1}$: We have $T(1)=1 \leq C \cdot 1$ whenever $\mathbf{C} \geq \mathbf{1}$.
Inductive step: Suppose that for all $1 \leq n^{\prime} \leq n-1, T\left(n^{\prime}\right) \leq C n^{\prime}$.
Then we must prove $T(n) \leq C n$.

Formal proof via substitution

$$
T(1)=1, \quad T(n)=3 T(n / 4)+n / 2, \quad n \text { is a power of } 4 .
$$

Guess: $T(n) \leq C n$ for all $n \geq 1$ (C to be determined).
Now that we have a good guess, proving it formally is a standard induction.
Base case $\boldsymbol{n}=\mathbf{1}$: We have $T(1)=1 \leq C \cdot 1$ whenever $\mathbf{C} \geq \mathbf{1}$.
Inductive step: Suppose that for all $1 \leq n^{\prime} \leq n-1, T\left(n^{\prime}\right) \leq C n^{\prime}$. Then we must prove $T(n) \leq C n$.

By the induction hypothesis, we have

$$
T(n)=3 T(n / 4)+n / 2
$$

Formal proof via substitution

$$
T(1)=1, \quad T(n)=3 T(n / 4)+n / 2, \quad n \text { is a power of } 4 .
$$

Guess: $T(n) \leq C n$ for all $n \geq 1$ (C to be determined).
Now that we have a good guess, proving it formally is a standard induction.
Base case $\boldsymbol{n}=\mathbf{1}$: We have $T(1)=1 \leq C \cdot 1$ whenever $\mathbf{C} \geq \mathbf{1}$.
Inductive step: Suppose that for all $1 \leq n^{\prime} \leq n-1, T\left(n^{\prime}\right) \leq C n^{\prime}$. Then we must prove $T(n) \leq C n$.

By the induction hypothesis, we have

$$
T(n)=3 T(n / 4)+n / 2 \leq 3 C n / 4+n / 2
$$

Formal proof via substitution

$$
T(1)=1, \quad T(n)=3 T(n / 4)+n / 2, \quad n \text { is a power of } 4 .
$$

Guess: $T(n) \leq C n$ for all $n \geq 1$ (C to be determined).
Now that we have a good guess, proving it formally is a standard induction.
Base case $\boldsymbol{n}=\mathbf{1}$: We have $T(1)=1 \leq C \cdot 1$ whenever $\mathbf{C} \geq \mathbf{1}$.
Inductive step: Suppose that for all $1 \leq n^{\prime} \leq n-1, T\left(n^{\prime}\right) \leq C n^{\prime}$. Then we must prove $T(n) \leq C n$.

By the induction hypothesis, we have

$$
\begin{aligned}
T(n) & =3 T(n / 4)+n / 2 \leq 3 C n / 4+n / 2 \\
& =C n-C n / 4+n / 2
\end{aligned}
$$

Formal proof via substitution

$$
T(1)=1, \quad T(n)=3 T(n / 4)+n / 2, \quad n \text { is a power of } 4 .
$$

Guess: $T(n) \leq C n$ for all $n \geq 1$ (C to be determined).
Now that we have a good guess, proving it formally is a standard induction.
Base case $\boldsymbol{n}=\mathbf{1}$: We have $T(1)=1 \leq C \cdot 1$ whenever $\mathbf{C} \geq \mathbf{1}$.
Inductive step: Suppose that for all $1 \leq n^{\prime} \leq n-1, T\left(n^{\prime}\right) \leq C n^{\prime}$. Then we must prove $T(n) \leq C n$.

By the induction hypothesis, we have

$$
\begin{aligned}
T(n) & =3 T(n / 4)+n / 2 \leq 3 C n / 4+n / 2 \\
& =C n-C n / 4+n / 2=C n+\left(\frac{1}{2}-\frac{C}{4}\right) n .
\end{aligned}
$$

Formal proof via substitution

$$
T(1)=1, \quad T(n)=3 T(n / 4)+n / 2, \quad n \text { is a power of } 4 .
$$

Guess: $T(n) \leq C n$ for all $n \geq 1$ (C to be determined).
Now that we have a good guess, proving it formally is a standard induction.
Base case $\boldsymbol{n}=\mathbf{1}$: We have $T(1)=1 \leq C \cdot 1$ whenever $\mathbf{C} \geq \mathbf{1}$.
Inductive step: Suppose that for all $1 \leq n^{\prime} \leq n-1, T\left(n^{\prime}\right) \leq C n^{\prime}$. Then we must prove $T(n) \leq C n$.

By the induction hypothesis, we have

$$
\begin{aligned}
T(n) & =3 T(n / 4)+n / 2 \leq 3 C n / 4+n / 2 \\
& =C n-C n / 4+n / 2=C n+\left(\frac{1}{2}-\frac{C}{4}\right) n .
\end{aligned}
$$

This is at most $C n$ iff $C \geq 2$.

Formal proof via substitution

$$
T(1)=1, \quad T(n)=3 T(n / 4)+n / 2, \quad n \text { is a power of } 4 .
$$

Guess: $T(n) \leq C n$ for all $n \geq 1$ (C to be determined).
Now that we have a good guess, proving it formally is a standard induction.
Base case $\boldsymbol{n}=\mathbf{1}$: We have $T(1)=1 \leq C \cdot 1$ whenever $\boldsymbol{C} \geq \mathbf{1}$.
Inductive step: Suppose that for all $1 \leq n^{\prime} \leq n-1, T\left(n^{\prime}\right) \leq C n^{\prime}$. Then we must prove $T(n) \leq C n$.

By the induction hypothesis, we have

$$
\begin{aligned}
T(n) & =3 T(n / 4)+n / 2 \leq 3 C n / 4+n / 2 \\
& =C n-C n / 4+n / 2=C n+\left(\frac{1}{2}-\frac{C}{4}\right) n .
\end{aligned}
$$

This is at most $C n$ iff $C \geq 2$.
We have proved $T(n) \leq 2 n$ for all $n \geq 1$, and hence $T(n)=O(n)$.

Another example

Now consider the recurrence

$$
T(1)=1, \quad T(n)=4 T(n / 2)+n^{2}, \quad n \text { is a power of } 2 .
$$

Another example

Now consider the recurrence

$$
T(1)=1, \quad T(n)=4 T(n / 2)+n^{2}, \quad n \text { is a power of } 2 .
$$

Another example

Now consider the recurrence

$$
T(1)=1, \quad T(n)=4 T(n / 2)+n^{2}, \quad n \text { is a power of } 2 .
$$

Except for the bottom, level i has 4^{i-1} nodes, each with cost $\left(n / 2^{i-1}\right)^{2}$.

Another example

Now consider the recurrence

$$
T(1)=1, \quad T(n)=4 T(n / 2)+n^{2}, \quad n \text { is a power of } 2 .
$$

Except for the bottom, level i has 4^{i-1} nodes, each with cost $\left(n / 2^{i-1}\right)^{2}$. Let $\#($ levels $)=t$. Then $n / 2^{t-1}=1$, so we have $t=1+\log n$.

Analysing the tree

$$
T(1)=1, \quad T(n)=4 T(n / 2)+n^{2}, \quad n \text { is a power of } 2 .
$$

There are $1+\log n$ levels in total.
For $i \leq \log n$, level i has 4^{i-1} nodes with cost $\left(n / 2^{i-1}\right)^{2}$ each.
Level $1+\log n$ has $4^{\log n}=2^{2 \log n}=n^{2}$ nodes with time cost 1 each.
$T(n)$ is the total cost over the whole tree, so

$$
T(n)=\sum_{i=1}^{\log n} 4^{i-1} \cdot\left(\frac{n}{2^{i-1}}\right)^{2}+n^{2}
$$

Analysing the tree

$$
T(1)=1, \quad T(n)=4 T(n / 2)+n^{2}, \quad n \text { is a power of } 2 .
$$

There are $1+\log n$ levels in total.
For $i \leq \log n$, level i has 4^{i-1} nodes with cost $\left(n / 2^{i-1}\right)^{2}$ each.
Level $1+\log n$ has $4^{\log n}=2^{2 \log n}=n^{2}$ nodes with time cost 1 each.
$T(n)$ is the total cost over the whole tree, so

$$
T(n)=\sum_{i=1}^{\log n} 4^{i-1} \cdot\left(\frac{n}{2^{i-1}}\right)^{2}+n^{2}=\sum_{i=1}^{\log n} n^{2}+n^{2}
$$

Analysing the tree

$$
T(1)=1, \quad T(n)=4 T(n / 2)+n^{2}, \quad n \text { is a power of } 2 .
$$

There are $1+\log n$ levels in total.
For $i \leq \log n$, level i has 4^{i-1} nodes with cost $\left(n / 2^{i-1}\right)^{2}$ each.
Level $1+\log n$ has $4^{\log n}=2^{2 \log n}=n^{2}$ nodes with time cost 1 each.
$T(n)$ is the total cost over the whole tree, so

$$
\begin{aligned}
T(n) & =\sum_{i=1}^{\log n} 4^{i-1} \cdot\left(\frac{n}{2^{i-1}}\right)^{2}+n^{2}=\sum_{i=1}^{\log n} n^{2}+n^{2} \\
& =(\log (n)+1) n^{2}
\end{aligned}
$$

Analysing the tree

$$
T(1)=1, \quad T(n)=4 T(n / 2)+n^{2}, \quad n \text { is a power of } 2 .
$$

There are $1+\log n$ levels in total.
For $i \leq \log n$, level i has 4^{i-1} nodes with cost $\left(n / 2^{i-1}\right)^{2}$ each.
Level $1+\log n$ has $4^{\log n}=2^{2 \log n}=n^{2}$ nodes with time cost 1 each.
$T(n)$ is the total cost over the whole tree, so

$$
\begin{aligned}
T(n) & =\sum_{i=1}^{\log n} 4^{i-1} \cdot\left(\frac{n}{2^{i-1}}\right)^{2}+n^{2}=\sum_{i=1}^{\log n} n^{2}+n^{2} \\
& =(\log (n)+1) n^{2}=O\left(n^{2} \log n\right)
\end{aligned}
$$

Analysing the tree

$$
T(1)=1, \quad T(n)=4 T(n / 2)+n^{2}, \quad n \text { is a power of } 2 .
$$

There are $1+\log n$ levels in total.
For $i \leq \log n$, level i has 4^{i-1} nodes with cost $\left(n / 2^{i-1}\right)^{2}$ each.
Level $1+\log n$ has $4^{\log n}=2^{2 \log n}=n^{2}$ nodes with time cost 1 each.
$T(n)$ is the total cost over the whole tree, so

$$
\begin{aligned}
T(n) & =\sum_{i=1}^{\log n} 4^{i-1} \cdot\left(\frac{n}{2^{i-1}}\right)^{2}+n^{2}=\sum_{i=1}^{\log n} n^{2}+n^{2} \\
& =(\log (n)+1) n^{2}=O\left(n^{2} \log n\right)
\end{aligned}
$$

In other words, every level costs the same.

Formal proof by substitution

$$
T(1)=1, \quad T(n)=4 T(n / 2)+n^{2}, \quad n \text { is a power of } 2 .
$$

Guess: $T(n) \leq C n^{2} \log n$ for all $n \geq 2$ (C to be determined).

Formal proof by substitution

$$
T(1)=1, \quad T(n)=4 T(n / 2)+n^{2}, \quad n \text { is a power of } 2 .
$$

Guess: $T(n) \leq C n^{2} \log n$ for all $n \geq 2$ (C to be determined).
Base case $\boldsymbol{n}=2$: We have $T(2)=4 T(1)+4=8$, and $C \cdot 2^{2} \log 2=4 C$. So $T(2) \leq C n^{2} \log n$ whenever $C \geq 2$.

Formal proof by substitution

$$
T(1)=1, \quad T(n)=4 T(n / 2)+n^{2}, \quad n \text { is a power of } 2 .
$$

Guess: $T(n) \leq C n^{2} \log n$ for all $n \geq 2$ (C to be determined).
Base case $\boldsymbol{n}=2$: We have $T(2)=4 T(1)+4=8$, and $C \cdot 2^{2} \log 2=4 C$. So $T(2) \leq C n^{2} \log n$ whenever $C \geq 2$.
Inductive step: Suppose that for all $2 \leq n^{\prime} \leq n-1, T\left(n^{\prime}\right) \leq C n^{\prime 2} \log n^{\prime}$. Then we must prove $T(n) \leq C n^{2} \log n$.

Formal proof by substitution

$$
T(1)=1, \quad T(n)=4 T(n / 2)+n^{2}, \quad n \text { is a power of } 2 .
$$

Guess: $T(n) \leq C n^{2} \log n$ for all $n \geq 2$ (C to be determined).
Base case $\boldsymbol{n}=2$: We have $T(2)=4 T(1)+4=8$, and $C \cdot 2^{2} \log 2=4 C$. So $T(2) \leq C n^{2} \log n$ whenever $C \geq 2$.
Inductive step: Suppose that for all $2 \leq n^{\prime} \leq n-1, T\left(n^{\prime}\right) \leq C n^{\prime 2} \log n^{\prime}$. Then we must prove $T(n) \leq C n^{2} \log n$.

By the induction hypothesis, we have

$$
T(n)=4 T(n / 2)+n^{2}
$$

Formal proof by substitution

$$
T(1)=1, \quad T(n)=4 T(n / 2)+n^{2}, \quad n \text { is a power of } 2 .
$$

Guess: $T(n) \leq C n^{2} \log n$ for all $n \geq 2$ (C to be determined).
Base case $\boldsymbol{n}=2$: We have $T(2)=4 T(1)+4=8$, and $C \cdot 2^{2} \log 2=4 C$. So $T(2) \leq C n^{2} \log n$ whenever $C \geq 2$.
Inductive step: Suppose that for all $2 \leq n^{\prime} \leq n-1, T\left(n^{\prime}\right) \leq C n^{\prime 2} \log n^{\prime}$. Then we must prove $T(n) \leq C n^{2} \log n$.

By the induction hypothesis, we have

$$
T(n)=4 T(n / 2)+n^{2} \leq 4 C\left(\frac{n}{2}\right)^{2} \log \left(\frac{n}{2}\right)+n^{2}
$$

Formal proof by substitution

$$
T(1)=1, \quad T(n)=4 T(n / 2)+n^{2}, \quad n \text { is a power of } 2 .
$$

Guess: $T(n) \leq C n^{2} \log n$ for all $n \geq 2$ (C to be determined).
Base case $\boldsymbol{n}=2$: We have $T(2)=4 T(1)+4=8$, and $C \cdot 2^{2} \log 2=4 C$. So $T(2) \leq C n^{2} \log n$ whenever $C \geq 2$.
Inductive step: Suppose that for all $2 \leq n^{\prime} \leq n-1, T\left(n^{\prime}\right) \leq C n^{\prime 2} \log n^{\prime}$. Then we must prove $T(n) \leq C n^{2} \log n$.

By the induction hypothesis, we have

$$
\begin{aligned}
T(n) & =4 T(n / 2)+n^{2} \leq 4 C\left(\frac{n}{2}\right)^{2} \log \left(\frac{n}{2}\right)+n^{2} \\
& =C n^{2}(\log n-1)+n^{2}
\end{aligned}
$$

Formal proof by substitution

$$
T(1)=1, \quad T(n)=4 T(n / 2)+n^{2}, \quad n \text { is a power of } 2 .
$$

Guess: $T(n) \leq C n^{2} \log n$ for all $n \geq 2$ (C to be determined).
Base case $\boldsymbol{n}=2$: We have $T(2)=4 T(1)+4=8$, and $C \cdot 2^{2} \log 2=4 C$. So $T(2) \leq C n^{2} \log n$ whenever $C \geq 2$.
Inductive step: Suppose that for all $2 \leq n^{\prime} \leq n-1, T\left(n^{\prime}\right) \leq C n^{\prime 2} \log n^{\prime}$. Then we must prove $T(n) \leq C n^{2} \log n$.

By the induction hypothesis, we have

$$
\begin{aligned}
T(n) & =4 T(n / 2)+n^{2} \leq 4 C\left(\frac{n}{2}\right)^{2} \log \left(\frac{n}{2}\right)+n^{2} \\
& =C n^{2}(\log n-1)+n^{2}=C n^{2} \log n+(1-C) n^{2}
\end{aligned}
$$

Formal proof by substitution

$$
T(1)=1, \quad T(n)=4 T(n / 2)+n^{2}, \quad n \text { is a power of } 2 .
$$

Guess: $T(n) \leq C n^{2} \log n$ for all $n \geq 2$ (C to be determined).
Base case $\boldsymbol{n}=2$: We have $T(2)=4 T(1)+4=8$, and $C \cdot 2^{2} \log 2=4 C$. So $T(2) \leq C n^{2} \log n$ whenever $C \geq 2$.
Inductive step: Suppose that for all $2 \leq n^{\prime} \leq n-1, T\left(n^{\prime}\right) \leq C n^{\prime 2} \log n^{\prime}$. Then we must prove $T(n) \leq C n^{2} \log n$.

By the induction hypothesis, we have

$$
\begin{aligned}
T(n) & =4 T(n / 2)+n^{2} \leq 4 C\left(\frac{n}{2}\right)^{2} \log \left(\frac{n}{2}\right)+n^{2} \\
& =C n^{2}(\log n-1)+n^{2}=C n^{2} \log n+(1-C) n^{2}
\end{aligned}
$$

This is at most $C n^{2} \log n$ iff $C \geq 1$.

Formal proof by substitution

$$
T(1)=1, \quad T(n)=4 T(n / 2)+n^{2}, \quad n \text { is a power of } 2 .
$$

Guess: $T(n) \leq C n^{2} \log n$ for all $n \geq 2$ (C to be determined).
Base case $\boldsymbol{n}=2$: We have $T(2)=4 T(1)+4=8$, and $C \cdot 2^{2} \log 2=4 C$. So $T(2) \leq C n^{2} \log n$ whenever $C \geq 2$.
Inductive step: Suppose that for all $2 \leq n^{\prime} \leq n-1, T\left(n^{\prime}\right) \leq C n^{\prime 2} \log n^{\prime}$. Then we must prove $T(n) \leq C n^{2} \log n$.

By the induction hypothesis, we have

$$
\begin{aligned}
T(n) & =4 T(n / 2)+n^{2} \leq 4 C\left(\frac{n}{2}\right)^{2} \log \left(\frac{n}{2}\right)+n^{2} \\
& =C n^{2}(\log n-1)+n^{2}=C n^{2} \log n+(1-C) n^{2}
\end{aligned}
$$

This is at most $C n^{2} \log n$ iff $C \geq 1$.
We have proved $T(n) \leq 2 n^{2} \log n$ for all $n \geq 2$, so $T(n)=O\left(n^{2} \log n\right)$.

A third example

Now consider the recurrence

$$
T(1)=1, \quad T(n)=2 T(n / 3)+\sqrt{n}, \quad n \text { is a power of } 3 .
$$

A third example

Now consider the recurrence

A third example

Now consider the recurrence

Except for the bottom, level i has 2^{i-1} nodes, each with cost $\sqrt{n / 3^{i-1}}$.

A third example

Now consider the recurrence

Except for the bottom, level i has 2^{i-1} nodes, each with cost $\sqrt{n / 3^{i-1}}$. Let $\#($ levels $)=t$. Then $n / 3^{t-1}=1$, so we have $t=1+\log _{3} n$.

Analysing the tree

$$
T(1)=1, \quad T(n)=2 T(n / 3)+\sqrt{n}, \quad n \text { is a power of } 3 .
$$

There are $1+\log _{3} n$ levels in total.
For $i \leq \log _{3} n$, level i has 2^{i-1} nodes with cost $\sqrt{n / 3^{i-1}}$ each.
Level $1+\log _{3} n$ has $2^{\log _{3} n}$ nodes with time cost 1 each.
$T(n)$ is the total cost over the whole tree, so

$$
T(n)=\sum_{i=1}^{\log _{3} n} 2^{i-1} \cdot \sqrt{n / 3^{i-1}}+2^{\log _{3} n}
$$

Analysing the tree

$$
T(1)=1, \quad T(n)=2 T(n / 3)+\sqrt{n}, \quad n \text { is a power of } 3 .
$$

There are $1+\log _{3} n$ levels in total.
For $i \leq \log _{3} n$, level i has 2^{i-1} nodes with cost $\sqrt{n / 3^{i-1}}$ each.
Level $1+\log _{3} n$ has $2^{\log _{3} n}$ nodes with time cost 1 each.
$T(n)$ is the total cost over the whole tree, so

$$
T(n)=\sum_{i=1}^{\log _{3} n} 2^{i-1} \cdot \sqrt{n / 3^{i-1}}+2^{\log _{3} n}=\sqrt{n} \sum_{i=1}^{\log _{3} n}\left(\frac{2}{\sqrt{3}}\right)^{i-1}+2^{\log _{3} n}
$$

Analysing the tree

$$
T(1)=1, \quad T(n)=2 T(n / 3)+\sqrt{n}, \quad n \text { is a power of } 3 .
$$

There are $1+\log _{3} n$ levels in total.
For $i \leq \log _{3} n$, level i has 2^{i-1} nodes with cost $\sqrt{n / 3^{i-1}}$ each.
Level $1+\log _{3} n$ has $2^{\log _{3} n}$ nodes with time cost 1 each.
$T(n)$ is the total cost over the whole tree, so

$$
T(n)=\sum_{i=1}^{\log _{3} n} 2^{i-1} \cdot \sqrt{n / 3^{i-1}}+2^{\log _{3} n}=\sqrt{n} \sum_{i=1}^{\log _{3} n}\left(\frac{2}{\sqrt{3}}\right)^{i-1}+2^{\log _{3} n}
$$

Since $2>\sqrt{3}$, this sum is dominated by its last term; formally, we have

$$
\sum_{i=1}^{\log _{3} n}\left(\frac{2}{\sqrt{3}}\right)^{i-1}
$$

Analysing the tree

$$
T(1)=1, \quad T(n)=2 T(n / 3)+\sqrt{n}, \quad n \text { is a power of } 3 .
$$

There are $1+\log _{3} n$ levels in total.
For $i \leq \log _{3} n$, level i has 2^{i-1} nodes with cost $\sqrt{n / 3^{i-1}}$ each.
Level $1+\log _{3} n$ has $2^{\log _{3} n}$ nodes with time cost 1 each.
$T(n)$ is the total cost over the whole tree, so

$$
T(n)=\sum_{i=1}^{\log _{3} n} 2^{i-1} \cdot \sqrt{n / 3^{i-1}}+2^{\log _{3} n}=\sqrt{n} \sum_{i=1}^{\log _{3} n}\left(\frac{2}{\sqrt{3}}\right)^{i-1}+2^{\log _{3} n}
$$

Since $2>\sqrt{3}$, this sum is dominated by its last term; formally, we have

$$
\sum_{i=1}^{\log _{3} n}\left(\frac{2}{\sqrt{3}}\right)^{i-1}=\left(\frac{2}{\sqrt{3}}\right)^{\log _{3} n-1} \sum_{j=0}^{\log _{3}-1}\left(\frac{\sqrt{3}}{2}\right)^{j}
$$

Analysing the tree

$$
T(1)=1, \quad T(n)=2 T(n / 3)+\sqrt{n}, \quad n \text { is a power of } 3 .
$$

There are $1+\log _{3} n$ levels in total.
For $i \leq \log _{3} n$, level i has 2^{i-1} nodes with cost $\sqrt{n / 3^{i-1}}$ each.
Level $1+\log _{3} n$ has $2^{\log _{3} n}$ nodes with time cost 1 each.
$T(n)$ is the total cost over the whole tree, so

$$
T(n)=\sum_{i=1}^{\log _{3} n} 2^{i-1} \cdot \sqrt{n / 3^{i-1}}+2^{\log _{3} n}=\sqrt{n} \sum_{i=1}^{\log _{3} n}\left(\frac{2}{\sqrt{3}}\right)^{i-1}+2^{\log _{3} n}
$$

Since $2>\sqrt{3}$, this sum is dominated by its last term; formally, we have

$$
\sum_{i=1}^{\log _{3} n}\left(\frac{2}{\sqrt{3}}\right)^{i-1}=\left(\frac{2}{\sqrt{3}}\right)^{\log _{3} n-1} \sum_{j=0}^{\log _{3}-1}\left(\frac{\sqrt{3}}{2}\right)^{j}=\Theta\left(\left(\frac{2}{\sqrt{3}}\right)^{\log _{3} n}\right) .
$$

Analysing the tree (part 2)

$$
\begin{aligned}
T(n) & =\sqrt{n} \sum_{i=1}^{\log _{3} n}\left(\frac{2}{\sqrt{3}}\right)^{i-1}+2^{\log _{3} n}, \\
\sum_{i=1}^{\log _{3} n}\left(\frac{2}{\sqrt{3}}\right)^{i-1} & =\Theta\left(\left(\frac{2}{\sqrt{3}}\right)^{\log _{3} n}\right) .
\end{aligned}
$$

Analysing the tree (part 2)

$$
\begin{aligned}
T(n) & =\sqrt{n} \sum_{i=1}^{\log _{3} n}\left(\frac{2}{\sqrt{3}}\right)^{i-1}+2^{\log _{3} n} \\
\sum_{i=1}^{\log _{3} n}\left(\frac{2}{\sqrt{3}}\right)^{i-1} & =\Theta\left(\left(\frac{2}{\sqrt{3}}\right)^{\log _{3} n}\right) .
\end{aligned}
$$

We have

$$
\sqrt{n}\left(\frac{2}{\sqrt{3}}\right)^{\log _{3} n}=\sqrt{n} \cdot \frac{2^{\log _{3} n}}{3^{\left(\log _{3} n\right) / 2}}
$$

Analysing the tree (part 2)

$$
\begin{aligned}
T(n) & =\sqrt{n} \sum_{i=1}^{\log _{3} n}\left(\frac{2}{\sqrt{3}}\right)^{i-1}+2^{\log _{3} n}, \\
\sum_{i=1}^{\log _{3} n}\left(\frac{2}{\sqrt{3}}\right)^{i-1} & =\Theta\left(\left(\frac{2}{\sqrt{3}}\right)^{\log _{3} n}\right) .
\end{aligned}
$$

We have

$$
\sqrt{n}\left(\frac{2}{\sqrt{3}}\right)^{\log _{3} n}=\sqrt{n} \cdot \frac{2^{\log _{3} n}}{3^{\left(\log _{3} n\right) / 2}}=\sqrt{n} \cdot \frac{2^{\log _{3} n}}{n^{1 / 2}}
$$

Analysing the tree (part 2)

$$
\begin{aligned}
T(n) & =\sqrt{n} \sum_{i=1}^{\log _{3} n}\left(\frac{2}{\sqrt{3}}\right)^{i-1}+2^{\log _{3} n} \\
\sum_{i=1}^{\log _{3} n}\left(\frac{2}{\sqrt{3}}\right)^{i-1} & =\Theta\left(\left(\frac{2}{\sqrt{3}}\right)^{\log _{3} n}\right) .
\end{aligned}
$$

We have

$$
\sqrt{n}\left(\frac{2}{\sqrt{3}}\right)^{\log _{3} n}=\sqrt{n} \cdot \frac{2^{\log _{3} n}}{3^{\left(\log _{3} n\right) / 2}}=\sqrt{n} \cdot \frac{2^{\log _{3} n}}{n^{1 / 2}}=2^{\log _{3} n}
$$

Analysing the tree (part 2)

$$
\begin{aligned}
T(n) & =\sqrt{n} \sum_{i=1}^{\log _{3} n}\left(\frac{2}{\sqrt{3}}\right)^{i-1}+2^{\log _{3} n} \\
\sum_{i=1}^{\log _{3} n}\left(\frac{2}{\sqrt{3}}\right)^{i-1} & =\Theta\left(\left(\frac{2}{\sqrt{3}}\right)^{\log _{3} n}\right)
\end{aligned}
$$

We have

$$
\sqrt{n}\left(\frac{2}{\sqrt{3}}\right)^{\log _{3} n}=\sqrt{n} \cdot \frac{2^{\log _{3} n}}{3^{\left(\log _{3} n\right) / 2}}=\sqrt{n} \cdot \frac{2^{\log _{3} n}}{n^{1 / 2}}=2^{\log _{3} n}
$$

So $T(n)=O\left(2^{\log _{3} n}\right)=O\left(n^{1 / \log (3)}\right)$, and the leaves dominate.

Formal proof by substitution

$$
T(1)=1, \quad T(n)=2 T(n / 3)+\sqrt{n}, \quad n \text { is a power of } 3 .
$$

Guess: $T(n) \leq C n^{1 / \log (3)}$ for all $n \geq 1$ (C to be determined).

Formal proof by substitution

$$
T(1)=1, \quad T(n)=2 T(n / 3)+\sqrt{n}, \quad n \text { is a power of } 3 .
$$

Guess: $T(n) \leq C n^{1 / \log (3)}$ for all $n \geq 1$ (C to be determined).
Base case $\boldsymbol{n}=1$: We have $T(1)=1 \leq C \cdot 1^{1 / \log (3)}$ whenever $C \geq 1$. \checkmark

Formal proof by substitution

$$
T(1)=1, \quad T(n)=2 T(n / 3)+\sqrt{n}, \quad n \text { is a power of } 3 .
$$

Guess: $T(n) \leq C n^{1 / \log (3)}$ for all $n \geq 1$ (C to be determined).
Base case $\boldsymbol{n}=\mathbf{1}$: We have $T(1)=1 \leq C \cdot 1^{1 / \log (3)}$ whenever $C \geq 1$. \checkmark Inductive step: Suppose that for all $1 \leq n^{\prime} \leq n-1, T\left(n^{\prime}\right) \leq C n^{\prime 1 / \log (3)}$. Then we must prove $T(n) \leq \mathrm{Cn}^{1 / \log (3)}$.

Formal proof by substitution

$$
T(1)=1, \quad T(n)=2 T(n / 3)+\sqrt{n}, \quad n \text { is a power of } 3 .
$$

Guess: $T(n) \leq C n^{1 / \log (3)}$ for all $n \geq 1$ (C to be determined).
Base case $\boldsymbol{n}=\mathbf{1}$: We have $T(1)=1 \leq C \cdot 1^{1 / \log (3)}$ whenever $C \geq 1$. \checkmark Inductive step: Suppose that for all $1 \leq n^{\prime} \leq n-1, T\left(n^{\prime}\right) \leq C n^{\prime 1 / \log (3)}$. Then we must prove $T(n) \leq C n^{1 / \log (3)}$.

By the induction hypothesis, we have

$$
T(n)=2 T(n / 3)+\sqrt{n}
$$

Formal proof by substitution

$$
T(1)=1, \quad T(n)=2 T(n / 3)+\sqrt{n}, \quad n \text { is a power of } 3 .
$$

Guess: $T(n) \leq C n^{1 / \log (3)}$ for all $n \geq 1$ (C to be determined).
Base case $\boldsymbol{n}=\mathbf{1}$: We have $T(1)=1 \leq C \cdot 1^{1 / \log (3)}$ whenever $C \geq 1$. \checkmark Inductive step: Suppose that for all $1 \leq n^{\prime} \leq n-1, T\left(n^{\prime}\right) \leq C n^{\prime 1 / \log (3)}$. Then we must prove $T(n) \leq C n^{1 / \log (3)}$.

By the induction hypothesis, we have

$$
T(n)=2 T(n / 3)+\sqrt{n} \leq 2 C(n / 3)^{1 / \log (3)}+\sqrt{n}
$$

Formal proof by substitution

$$
T(1)=1, \quad T(n)=2 T(n / 3)+\sqrt{n}, \quad n \text { is a power of } 3 .
$$

Guess: $T(n) \leq C n^{1 / \log (3)}$ for all $n \geq 1$ (C to be determined).
Base case $\boldsymbol{n}=\mathbf{1}$: We have $T(1)=1 \leq C \cdot 1^{1 / \log (3)}$ whenever $C \geq 1$. \checkmark Inductive step: Suppose that for all $1 \leq n^{\prime} \leq n-1, T\left(n^{\prime}\right) \leq C n^{\prime 1 / \log (3)}$. Then we must prove $T(n) \leq C n^{1 / \log (3)}$.

By the induction hypothesis, we have

$$
\begin{aligned}
T(n) & =2 T(n / 3)+\sqrt{n} \leq 2 C(n / 3)^{1 / \log (3)}+\sqrt{n} \\
& =\frac{2}{3^{1 / \log (3)}} C n^{1 / \log (3)}+\sqrt{n} .
\end{aligned}
$$

Formal proof by substitution

$$
T(1)=1, \quad T(n)=2 T(n / 3)+\sqrt{n}, \quad n \text { is a power of } 3 .
$$

Guess: $T(n) \leq C n^{1 / \log (3)}$ for all $n \geq 1$ (C to be determined).
Base case $\boldsymbol{n}=1$: We have $T(1)=1 \leq C \cdot 1^{1 / \log (3)}$ whenever $C \geq 1$. \checkmark Inductive step: Suppose that for all $1 \leq n^{\prime} \leq n-1, T\left(n^{\prime}\right) \leq C n^{\prime 1 / \log (3)}$. Then we must prove $T(n) \leq C n^{1 / \log (3)}$.

By the induction hypothesis, we have

$$
\begin{aligned}
T(n) & =2 T(n / 3)+\sqrt{n} \leq 2 C(n / 3)^{1 / \log (3)}+\sqrt{n} \\
& =\frac{2}{3^{1 / \log (3)}} C n^{1 / \log (3)}+\sqrt{n}
\end{aligned}
$$

We have $3^{1 / \log (3)}=2^{\log (3) / \log (3)}=2$, so $T(n) \leq C n^{1 / \log (3)}+\sqrt{n}$.

Formal proof by substitution

$$
T(1)=1, \quad T(n)=2 T(n / 3)+\sqrt{n}, \quad n \text { is a power of } 3 .
$$

Guess: $T(n) \leq C n^{1 / \log (3)}$ for all $n \geq 1$ (C to be determined).
Base case $\boldsymbol{n}=1$: We have $T(1)=1 \leq C \cdot 1^{1 / \log (3)}$ whenever $C \geq 1$. \checkmark Inductive step: Suppose that for all $1 \leq n^{\prime} \leq n-1, T\left(n^{\prime}\right) \leq C n^{\prime 1 / \log (3)}$. Then we must prove $T(n) \leq C n^{1 / \log (3)}$.
By the induction hypothesis, we have

$$
\begin{aligned}
T(n) & =2 T(n / 3)+\sqrt{n} \leq 2 C(n / 3)^{1 / \log (3)}+\sqrt{n} \\
& =\frac{2}{3^{1 / \log (3)}} C n^{1 / \log (3)}+\sqrt{n}
\end{aligned}
$$

We have $3^{1 / \log (3)}=2^{\log (3) / \log (3)}=2$, so $T(n) \leq C n^{1 / \log (3)}+\sqrt{n} \ldots$ which isn't quite good enough.

But we know how to deal with this: add a correction term!

Formal proof by substitution (attempt 2)

$$
T(1)=1, \quad T(n)=2 T(n / 3)+\sqrt{n}, \quad n \text { is a power of } 3 .
$$

Guess: $T(n) \leq C n^{1 / \log (3)}-\sqrt{n}$ for all $n \geq 1(C$ to be determined $)$.

Formal proof by substitution (attempt 2)

$$
T(1)=1, \quad T(n)=2 T(n / 3)+\sqrt{n}, \quad n \text { is a power of } 3 .
$$

Guess: $T(n) \leq C n^{1 / \log (3)}-\sqrt{n}$ for all $n \geq 1(C$ to be determined $)$.
Base case $\boldsymbol{n}=1$: We have $T(1)=1$, and $C \cdot 1^{1 / \log (3)}-\sqrt{1}=C-1$. So the base case works whenever $C \geq 2$.

Formal proof by substitution (attempt 2)

$$
T(1)=1, \quad T(n)=2 T(n / 3)+\sqrt{n}, \quad n \text { is a power of } 3 .
$$

Guess: $T(n) \leq C n^{1 / \log (3)}-\sqrt{\boldsymbol{n}}$ for all $n \geq 1(C$ to be determined $)$.
Base case $\boldsymbol{n}=1$: We have $T(1)=1$, and $C \cdot 1^{1 / \log (3)}-\sqrt{1}=C-1$. So the base case works whenever $C \geq 2$.
Inductive step: Suppose for all $n^{\prime} \leq n-1, T\left(n^{\prime}\right) \leq C n^{\prime 1 / \log (3)}-\sqrt{n^{\prime}}$. Then we must prove $T(n) \leq C n^{1 / \log (3)}-\sqrt{n}$.

Formal proof by substitution (attempt 2)

$$
T(1)=1, \quad T(n)=2 T(n / 3)+\sqrt{n}, \quad n \text { is a power of } 3 .
$$

Guess: $T(n) \leq C n^{1 / \log (3)}-\sqrt{n}$ for all $n \geq 1(C$ to be determined $)$.
Base case $\boldsymbol{n}=1$: We have $T(1)=1$, and $C \cdot 1^{1 / \log (3)}-\sqrt{1}=C-1$. So the base case works whenever $C \geq 2$.
Inductive step: Suppose for all $n^{\prime} \leq n-1, T\left(n^{\prime}\right) \leq C n^{\prime 1 / \log (3)}-\sqrt{n^{\prime}}$. Then we must prove $T(n) \leq C n^{1 / \log (3)}-\sqrt{n}$.

By the induction hypothesis, we have

$$
T(n)=2 T(n / 3)+\sqrt{n}
$$

Formal proof by substitution (attempt 2)

$$
T(1)=1, \quad T(n)=2 T(n / 3)+\sqrt{n}, \quad n \text { is a power of } 3 .
$$

Guess: $T(n) \leq C n^{1 / \log (3)}-\sqrt{\boldsymbol{n}}$ for all $n \geq 1(C$ to be determined $)$.
Base case $\boldsymbol{n}=1$: We have $T(1)=1$, and $C \cdot 1^{1 / \log (3)}-\sqrt{1}=C-1$. So the base case works whenever $C \geq 2$.
Inductive step: Suppose for all $n^{\prime} \leq n-1, T\left(n^{\prime}\right) \leq C n^{\prime 1 / \log (3)}-\sqrt{n^{\prime}}$. Then we must prove $T(n) \leq C n^{1 / \log (3)}-\sqrt{n}$.

By the induction hypothesis, we have

$$
T(n)=2 T(n / 3)+\sqrt{n} \leq 2 C(n / 3)^{1 / \log (3)}-2 \sqrt{n / 3}+\sqrt{n}
$$

Formal proof by substitution (attempt 2)

$$
T(1)=1, \quad T(n)=2 T(n / 3)+\sqrt{n}, \quad n \text { is a power of } 3 .
$$

Guess: $T(n) \leq C n^{1 / \log (3)}-\sqrt{\boldsymbol{n}}$ for all $n \geq 1(C$ to be determined $)$.
Base case $\boldsymbol{n}=1$: We have $T(1)=1$, and $C \cdot 1^{1 / \log (3)}-\sqrt{1}=C-1$. So the base case works whenever $C \geq 2$.
Inductive step: Suppose for all $n^{\prime} \leq n-1, T\left(n^{\prime}\right) \leq C n^{\prime 1 / \log (3)}-\sqrt{n^{\prime}}$. Then we must prove $T(n) \leq C n^{1 / \log (3)}-\sqrt{n}$.

By the induction hypothesis, we have

$$
\begin{aligned}
T(n) & =2 T(n / 3)+\sqrt{n} \leq 2 C(n / 3)^{1 / \log (3)}-2 \sqrt{n / 3}+\sqrt{n} \\
& \leq \frac{2}{3^{1 / \log (3)}} C n^{1 / \log (3)}
\end{aligned}
$$

Formal proof by substitution (attempt 2)

$$
T(1)=1, \quad T(n)=2 T(n / 3)+\sqrt{n}, \quad n \text { is a power of } 3 .
$$

Guess: $T(n) \leq C n^{1 / \log (3)}-\sqrt{n}$ for all $n \geq 1(C$ to be determined).
Base case $\boldsymbol{n}=1$: We have $T(1)=1$, and $C \cdot 1^{1 / \log (3)}-\sqrt{1}=C-1$. So the base case works whenever $C \geq 2$.
Inductive step: Suppose for all $n^{\prime} \leq n-1, T\left(n^{\prime}\right) \leq C n^{\prime 1 / \log (3)}-\sqrt{n^{\prime}}$. Then we must prove $T(n) \leq C n^{1 / \log (3)}-\sqrt{n}$.

By the induction hypothesis, we have

$$
\begin{aligned}
T(n) & =2 T(n / 3)+\sqrt{n} \leq 2 C(n / 3)^{1 / \log (3)}-2 \sqrt{n / 3}+\sqrt{n} \\
& \leq \frac{2}{3^{1 / \log (3)}} C n^{1 / \log (3)}
\end{aligned}
$$

We have $3^{1 / \log (3)}=2^{\log (3) / \log (3)}=2$, so this is at most $\mathrm{Cn}^{1 / \log (3)}$ always.

Formal proof by substitution (attempt 2)

$$
T(1)=1, \quad T(n)=2 T(n / 3)+\sqrt{n}, \quad n \text { is a power of } 3 .
$$

Guess: $T(n) \leq C n^{1 / \log (3)}-\sqrt{n}$ for all $n \geq 1$ (C to be determined).
Base case $\boldsymbol{n}=1$: We have $T(1)=1$, and $C \cdot 1^{1 / \log (3)}-\sqrt{1}=C-1$. So the base case works whenever $C \geq 2$.
Inductive step: Suppose for all $n^{\prime} \leq n-1, T\left(n^{\prime}\right) \leq C n^{\prime 1 / \log (3)}-\sqrt{n^{\prime}}$. Then we must prove $T(n) \leq C n^{1 / \log (3)}-\sqrt{n}$.

By the induction hypothesis, we have

$$
\begin{aligned}
T(n) & =2 T(n / 3)+\sqrt{n} \leq 2 C(n / 3)^{1 / \log (3)}-2 \sqrt{n / 3}+\sqrt{n} \\
& \leq \frac{2}{3^{1 / \log (3)}} C n^{1 / \log (3)}
\end{aligned}
$$

We have $3^{1 / \log (3)}=2^{\log (3) / \log (3)}=2$, so this is at most $C n^{1 / \log (3)}$ always.
We have proved $T(n) \leq 2 n^{1 / \log (3)}-\sqrt{n}$ for all n, so $T(n)=O\left(n^{1 / \log (3)}\right)$.

Recap

These examples fell into three categories:
(1) For $T(n)=2 T(n / 3)+\sqrt{n}$, the leaves dominated.
(2) For $T(n)=4 T(n / 2)+n^{2}$, the levels were all equal.
(3) For $T(n)=3 T(n / 4)+n / 2$, the root dominated.

Recap

These examples fell into three categories:
(1) For $T(n)=2 T(n / 3)+\sqrt{n}$, the leaves dominated.
(2) For $T(n)=4 T(n / 2)+n^{2}$, the levels were all equal.
(3) For $T(n)=3 T(n / 4)+n / 2$, the root dominated.

Wouldn't it be nice if we could put any recurrence relation of the form $T(n)=a T(n / b)+f(n)$ into one of those three categories?

Then we could just write the answer down without having to solve it...

Recap

These examples fell into three categories:
(1) For $T(n)=2 T(n / 3)+\sqrt{n}$, the leaves dominated.
(2) For $T(n)=4 T(n / 2)+n^{2}$, the levels were all equal.
(3) For $T(n)=3 T(n / 4)+n / 2$, the root dominated.

Wouldn't it be nice if we could put any recurrence relation of the form $T(n)=a T(n / b)+f(n)$ into one of those three categories?

Then we could just write the answer down without having to solve it...
Actually, we can!

The Master Theorem (non-examinable!)

The Master Theorem: Suppose $T(1)=O(1)$ and, for $n>1$, $T(n)=a T(n / b)+f(n)$ for some constants $a, b>0$ and some function $f: \mathbb{N} \rightarrow \mathbb{R}$. Let $\xi=\log _{b} a$ be the critical exponent. Then:
(1) If $f(n)=O\left(n^{\xi-\varepsilon}\right)$ for some $\varepsilon>0$, then $T(n)=\Theta\left(n^{\xi}\right)$.

In other words, the leaves dominate.
(2) If $f(n)=\Theta\left(n^{\xi}\right)$, then $T(n)=\Theta\left(n^{\xi} \log n\right)$.

In other words, the levels are roughly equal.
(3) If $f(n)=\Omega\left(n^{\xi+\varepsilon}\right)$ for some $\varepsilon>0$ and $a f(n / b)=O(f(n))$, then $T(n)=\Theta(f(n))$. In other words, the root dominates.

The Master Theorem (non-examinable!)

The Master Theorem: Suppose $T(1)=O(1)$ and, for $n>1$, $T(n)=a T(n / b)+f(n)$ for some constants $a, b>0$ and some function $f: \mathbb{N} \rightarrow \mathbb{R}$. Let $\xi=\log _{b} a$ be the critical exponent. Then:
(1) If $f(n)=O\left(n^{\xi-\varepsilon}\right)$ for some $\varepsilon>0$, then $T(n)=\Theta\left(n^{\xi}\right)$.

In other words, the leaves dominate.
(2) If $f(n)=\Theta\left(n^{\xi}\right)$, then $T(n)=\Theta\left(n^{\xi} \log n\right)$.

In other words, the levels are roughly equal.
(3) If $f(n)=\Omega\left(n^{\xi+\varepsilon}\right)$ for some $\varepsilon>0$ and $a f(n / b)=O(f(n))$, then $T(n)=\Theta(f(n))$. In other words, the root dominates.

The condition $a f(n / b)=O(f(n))$ in the last case always holds when f is a polynomial in n, but rules out weird cases like

$$
f(n)= \begin{cases}n & \text { if } n \text { is odd } \\ n^{2} & \text { if } n \text { is even }\end{cases}
$$

Next time: Christian's triumphant return!*

*Return may not be triumphant or even physical, rules and restrictions apply.

