Solving Recurrences II COMS10007 2020, Lecture 14

Dr. John Lapinskas (substituting for Dr. Christian Konrad)

March 18th 2020

The recursion tree method

This lecture we'll ignore O-notation and divisibility issues, and focus on examples of the recurrences themselves. Consider the recurrence

$$T(1) = 1$$
, $T(n) = 3T(n/4) + n/2$, n is a power of 4.

Step 1: Use the recursion tree method to get a good guess at a solution.

As with the mergesort analysis, we view this as a tree.

Each recursive invocation corresponds to a child node — so the root has three children, each of which has three children, and so on.

Each node gets labelled with the non-recursive running time at that step, and then T(n) is the sum of all the labels in the tree.

$$T(1) = 1$$
,

$$T(1) = 1$$
, $T(n) = 3T(n/4) + n/2$, n is a power of 4.

3/17

$$n = 64$$

$$n = 16$$

$$T(64) = 3T(16) + 32$$

$$T(1) = 1,$$
 $T(n) = 3T(n/4) + n/2,$ n is a power of 4.

$$T(64) = 3T(16) + 32 = 9T(4) + 3 \cdot 8 + 32$$

$$T(1) = 1$$
, $T(n) = 3T(n/4) + n/2$, n is a power of 4.

3/17

$$T(64) = 9T(4) + 3 \cdot 8 + 32$$

$$T(1) = 1,$$
 $T(n) = 3T(n/4) + n/2,$ n is a power of 4.

$$T(64) = 9T(4) + 3 \cdot 8 + 32 = 27T(1) + 9 \cdot 2 + 3 \cdot 8 + 32$$

$$T(1) = 1$$
, $T(n) = 3T(n/4) + n/2$, n is a power of 4.

$$T(64) = 27T(1) + 9 \cdot 2 + 3 \cdot 8 + 32$$

$$T(1) = 1$$
, $T(n) = 3T(n/4) + n/2$, n is a power of 4.

$$T(64) = 27T(1) + 9 \cdot 2 + 3 \cdot 8 + 32 = 27 \cdot 1 + 9 \cdot 2 + 3 \cdot 8 + 32$$

$$T(1) = 1$$
, $T(n) = 3T(n/4) + n/2$, n is a power of 4.

$$T(64) = 27 \cdot 1 + 9 \cdot 2 + 3 \cdot 8 + 32 = 101.$$

John Lapinskas Lecture 14 March 18th 2020

3/17

The general case

$$T(1) = 1,$$
 $T(n) = 3T(n/4) + n/2,$ n is a power of 4.

Except for the bottom, level i has 3^{i-1} nodes, each with cost $n/(2 \cdot 4^{i-1})$.

The general case

$$T(1) = 1,$$
 $T(n) = 3T(n/4) + n/2,$ n is a power of 4.

Except for the bottom, level i has 3^{i-1} nodes, each with cost $n/(2 \cdot 4^{i-1})$. Let #(levels) = t. Then $n/4^{t-1} = 1$, so we have $t = 1 + \log_4 n$.

John Lapinskas Lecture 14 March 18th 2020

4 / 17

$$T(1) = 1$$
, $T(n) = 3T(n/4) + n/2$, n is a power of 4.

For $i \leq \log_4 n$, level i has 3^{i-1} nodes with time cost $n/(2 \cdot 4^{i-1})$ each. Level $1 + \log_4 n$ has $3^{\log_4 n}$ nodes with time cost 1 each.

T(n) is the total time cost over the whole tree, so

$$T(n) = \sum_{i=1}^{\log_4 n} \left(\frac{3}{4}\right)^{i-1} \frac{n}{2} + 3^{\log_4 n}.$$

$$T(1) = 1,$$
 $T(n) = 3T(n/4) + n/2,$ n is a power of 4.

For $i \leq \log_4 n$, level i has 3^{i-1} nodes with time cost $n/(2 \cdot 4^{i-1})$ each. Level $1 + \log_4 n$ has $3^{\log_4 n}$ nodes with time cost 1 each.

T(n) is the total time cost over the whole tree, so

$$T(n) = \sum_{i=1}^{\log_4 n} \left(\frac{3}{4}\right)^{i-1} \frac{n}{2} + 3^{\log_4 n}.$$

Summing the geometric series gives

$$\sum_{i=1}^{\log_4 n} \left(\frac{3}{4}\right)^{i-1} \frac{n}{2}$$

$$T(1) = 1,$$
 $T(n) = 3T(n/4) + n/2,$ n is a power of 4.

For $i \leq \log_4 n$, level i has 3^{i-1} nodes with time cost $n/(2 \cdot 4^{i-1})$ each. Level $1 + \log_4 n$ has $3^{\log_4 n}$ nodes with time cost 1 each.

T(n) is the total time cost over the whole tree, so

$$T(n) = \sum_{i=1}^{\log_4 n} \left(\frac{3}{4}\right)^{i-1} \frac{n}{2} + 3^{\log_4 n}.$$

Summing the geometric series gives

$$\sum_{i=1}^{\log_4 n} \left(\frac{3}{4}\right)^{i-1} \frac{n}{2} = \frac{n}{2} \cdot \sum_{i=1}^{\log_4 n} \left(\frac{3}{4}\right)^{i-1}$$

$$T(1) = 1,$$
 $T(n) = 3T(n/4) + n/2,$ n is a power of 4.

For $i \leq \log_4 n$, level i has 3^{i-1} nodes with time cost $n/(2 \cdot 4^{i-1})$ each. Level $1 + \log_4 n$ has $3^{\log_4 n}$ nodes with time cost 1 each.

T(n) is the total time cost over the whole tree, so

$$T(n) = \sum_{i=1}^{\log_4 n} \left(\frac{3}{4}\right)^{i-1} \frac{n}{2} + 3^{\log_4 n}.$$

Summing the geometric series gives

$$\sum_{i=1}^{\log_4 n} \left(\frac{3}{4}\right)^{i-1} \frac{n}{2} = \frac{n}{2} \cdot \sum_{i=1}^{\log_4 n} \left(\frac{3}{4}\right)^{i-1} \le \frac{n}{2} \cdot \sum_{i=0}^{\infty} \left(\frac{3}{4}\right)^{i}$$

$$T(1) = 1,$$
 $T(n) = 3T(n/4) + n/2,$ n is a power of 4.

For $i \leq \log_4 n$, level i has 3^{i-1} nodes with time cost $n/(2 \cdot 4^{i-1})$ each. Level $1 + \log_4 n$ has $3^{\log_4 n}$ nodes with time cost 1 each.

T(n) is the total time cost over the whole tree, so

$$T(n) = \sum_{i=1}^{\log_4 n} \left(\frac{3}{4}\right)^{i-1} \frac{n}{2} + 3^{\log_4 n}.$$

Summing the geometric series gives

$$\sum_{i=1}^{\log_4 n} \left(\frac{3}{4}\right)^{i-1} \frac{n}{2} = \frac{n}{2} \cdot \sum_{i=1}^{\log_4 n} \left(\frac{3}{4}\right)^{i-1} \le \frac{n}{2} \cdot \sum_{i=0}^{\infty} \left(\frac{3}{4}\right)^i = \frac{n}{2} \cdot O(1)$$

$$T(1) = 1,$$
 $T(n) = 3T(n/4) + n/2,$ n is a power of 4.

For $i \leq \log_4 n$, level i has 3^{i-1} nodes with time cost $n/(2 \cdot 4^{i-1})$ each. Level $1 + \log_4 n$ has $3^{\log_4 n}$ nodes with time cost 1 each.

T(n) is the total time cost over the whole tree, so

$$T(n) = \sum_{i=1}^{\log_4 n} \left(\frac{3}{4}\right)^{i-1} \frac{n}{2} + 3^{\log_4 n}.$$

Summing the geometric series gives

$$\sum_{i=1}^{\log_4 n} \left(\frac{3}{4}\right)^{i-1} \frac{n}{2} = \frac{n}{2} \cdot \sum_{i=1}^{\log_4 n} \left(\frac{3}{4}\right)^{i-1} \le \frac{n}{2} \cdot \sum_{i=0}^{\infty} \left(\frac{3}{4}\right)^i = \frac{n}{2} \cdot O(1) = O(n).$$

$$T(1) = 1$$
, $T(n) = 3T(n/4) + n/2$, n is a power of 4.

For $i \leq \log_4 n$, level i has 3^{i-1} nodes with time cost $n/(2 \cdot 4^{i-1})$ each. Level $1 + \log_4 n$ has $3^{\log_4 n}$ nodes with time cost 1 each.

T(n) is the total time cost over the whole tree, so

$$T(n) = \sum_{i=1}^{\log_4 n} \left(\frac{3}{4}\right)^{i-1} \frac{n}{2} + 3^{\log_4 n}.$$

Summing the geometric series gives

$$\sum_{i=1}^{\log_4 n} \left(\frac{3}{4}\right)^{i-1} \frac{n}{2} = \frac{n}{2} \cdot \sum_{i=1}^{\log_4 n} \left(\frac{3}{4}\right)^{i-1} \le \frac{n}{2} \cdot \sum_{i=0}^{\infty} \left(\frac{3}{4}\right)^i = \frac{n}{2} \cdot O(1) = O(n).$$

And we have

$$T(1) = 1,$$
 $T(n) = 3T(n/4) + n/2,$ n is a power of 4.

For $i \leq \log_4 n$, level i has 3^{i-1} nodes with time cost $n/(2 \cdot 4^{i-1})$ each. Level $1 + \log_4 n$ has $3^{\log_4 n}$ nodes with time cost 1 each.

T(n) is the total time cost over the whole tree, so

$$T(n) = \sum_{i=1}^{\log_4 n} \left(\frac{3}{4}\right)^{i-1} \frac{n}{2} + 3^{\log_4 n}.$$

Summing the geometric series gives

$$\sum_{i=1}^{\log_4 n} \left(\frac{3}{4}\right)^{i-1} \frac{n}{2} = \frac{n}{2} \cdot \sum_{i=1}^{\log_4 n} \left(\frac{3}{4}\right)^{i-1} \le \frac{n}{2} \cdot \sum_{i=0}^{\infty} \left(\frac{3}{4}\right)^i = \frac{n}{2} \cdot O(1) = O(n).$$

And we have

$$3^{\log_4 n} = 2^{\log(3) \cdot \log_4(n)}$$

$$T(1) = 1$$
, $T(n) = 3T(n/4) + n/2$, n is a power of 4.

For $i \leq \log_4 n$, level i has 3^{i-1} nodes with time cost $n/(2 \cdot 4^{i-1})$ each. Level $1 + \log_4 n$ has $3^{\log_4 n}$ nodes with time cost 1 each.

T(n) is the total time cost over the whole tree, so

$$T(n) = \sum_{i=1}^{\log_4 n} \left(\frac{3}{4}\right)^{i-1} \frac{n}{2} + 3^{\log_4 n}.$$

Summing the geometric series gives

$$\sum_{i=1}^{\log_4 n} \left(\frac{3}{4}\right)^{i-1} \frac{n}{2} = \frac{n}{2} \cdot \sum_{i=1}^{\log_4 n} \left(\frac{3}{4}\right)^{i-1} \le \frac{n}{2} \cdot \sum_{i=0}^{\infty} \left(\frac{3}{4}\right)^i = \frac{n}{2} \cdot O(1) = O(n).$$

And we have

$$3^{\log_4 n} = 2^{\log(3) \cdot \log_4(n)} = 2^{\log(3) \cdot \frac{\log(n)}{\log(4)}}$$

$$T(1) = 1$$
, $T(n) = 3T(n/4) + n/2$, n is a power of 4.

For $i \leq \log_4 n$, level i has 3^{i-1} nodes with time cost $n/(2 \cdot 4^{i-1})$ each. Level $1 + \log_4 n$ has $3^{\log_4 n}$ nodes with time cost 1 each.

T(n) is the total time cost over the whole tree, so

$$T(n) = \sum_{i=1}^{\log_4 n} \left(\frac{3}{4}\right)^{i-1} \frac{n}{2} + 3^{\log_4 n}.$$

Summing the geometric series gives

$$\sum_{i=1}^{\log_4 n} \left(\frac{3}{4}\right)^{i-1} \frac{n}{2} = \frac{n}{2} \cdot \sum_{i=1}^{\log_4 n} \left(\frac{3}{4}\right)^{i-1} \le \frac{n}{2} \cdot \sum_{i=0}^{\infty} \left(\frac{3}{4}\right)^i = \frac{n}{2} \cdot O(1) = O(n).$$

And we have

$$3^{\log_4 n} = 2^{\log(3) \cdot \log_4(n)} = 2^{\log(3) \cdot \frac{\log(n)}{\log(4)}} = n^{\frac{\log(3)}{\log(4)}}$$

$$T(1) = 1,$$
 $T(n) = 3T(n/4) + n/2,$ n is a power of 4.

For $i \leq \log_4 n$, level i has 3^{i-1} nodes with time cost $n/(2 \cdot 4^{i-1})$ each. Level $1 + \log_4 n$ has $3^{\log_4 n}$ nodes with time cost 1 each.

T(n) is the total time cost over the whole tree, so

$$T(n) = \sum_{i=1}^{\log_4 n} \left(\frac{3}{4}\right)^{i-1} \frac{n}{2} + 3^{\log_4 n}.$$

Summing the geometric series gives

$$\sum_{i=1}^{\log_4 n} \left(\frac{3}{4}\right)^{i-1} \frac{n}{2} = \frac{n}{2} \cdot \sum_{i=1}^{\log_4 n} \left(\frac{3}{4}\right)^{i-1} \le \frac{n}{2} \cdot \sum_{i=0}^{\infty} \left(\frac{3}{4}\right)^i = \frac{n}{2} \cdot O(1) = O(n).$$

And we have

$$3^{\log_4 n} = 2^{\log(3) \cdot \log_4(n)} = 2^{\log(3) \cdot \frac{\log(n)}{\log(4)}} = n^{\frac{\log(3)}{\log(4)}} = o(n).$$

$$T(1) = 1$$
, $T(n) = 3T(n/4) + n/2$, n is a power of 4.

For $i \leq \log_4 n$, level i has 3^{i-1} nodes with time cost $n/(2 \cdot 4^{i-1})$ each. Level $1 + \log_4 n$ has $3^{\log_4 n}$ nodes with time cost 1 each.

T(n) is the total time cost over the whole tree, so

$$T(n) = \sum_{i=1}^{\log_4 n} \left(\frac{3}{4}\right)^{i-1} \frac{n}{2} + 3^{\log_4 n}.$$

Summing the geometric series gives

$$\sum_{i=1}^{\log_4 n} \left(\frac{3}{4}\right)^{i-1} \frac{n}{2} = \frac{n}{2} \cdot \sum_{i=1}^{\log_4 n} \left(\frac{3}{4}\right)^{i-1} \le \frac{n}{2} \cdot \sum_{i=0}^{\infty} \left(\frac{3}{4}\right)^i = \frac{n}{2} \cdot O(1) = O(n).$$

And we have

$$3^{\log_4 n} = 2^{\log(3) \cdot \log_4(n)} = 2^{\log(3) \cdot \frac{\log(n)}{\log(4)}} = n^{\frac{\log(3)}{\log(4)}} = o(n).$$

So overall, we expect T(n) = O(n). In other words, the root dominates.

$$T(1) = 1$$
, $T(n) = 3T(n/4) + n/2$, n is a power of 4.

Guess: $T(n) \leq Cn$ for all $n \geq 1$ (C to be determined).

Now that we have a good guess, proving it formally is a standard induction.

$$T(1) = 1$$
, $T(n) = 3T(n/4) + n/2$, n is a power of 4.

Guess: $T(n) \leq Cn$ for all $n \geq 1$ (C to be determined).

Now that we have a good guess, proving it formally is a standard induction.

Base case n = 1: We have $T(1) = 1 \le C \cdot 1$ whenever $C \ge 1$.

$$T(1) = 1$$
, $T(n) = 3T(n/4) + n/2$, n is a power of 4.

Guess: $T(n) \leq Cn$ for all $n \geq 1$ (C to be determined).

Now that we have a good guess, proving it formally is a standard induction.

Base case
$$n = 1$$
: We have $T(1) = 1 \le C \cdot 1$ whenever $C \ge 1$.

Inductive step: Suppose that for all $1 \le n' \le n-1$, $T(n') \le Cn'$. Then we must prove $T(n) \le Cn$.

$$T(1) = 1$$
, $T(n) = 3T(n/4) + n/2$, n is a power of 4.

Guess: $T(n) \leq Cn$ for all $n \geq 1$ (C to be determined).

Now that we have a good guess, proving it formally is a standard induction.

Base case
$$n = 1$$
: We have $T(1) = 1 \le C \cdot 1$ whenever $C \ge 1$.

Inductive step: Suppose that for all $1 \le n' \le n-1$, $T(n') \le Cn'$. Then we must prove $T(n) \le Cn$.

By the induction hypothesis, we have

$$T(n) = 3T(n/4) + n/2$$

$$T(1) = 1$$
, $T(n) = 3T(n/4) + n/2$, n is a power of 4.

Guess: $T(n) \leq Cn$ for all $n \geq 1$ (C to be determined).

Now that we have a good guess, proving it formally is a standard induction.

Base case
$$n = 1$$
: We have $T(1) = 1 \le C \cdot 1$ whenever $C \ge 1$.

Inductive step: Suppose that for all $1 \le n' \le n-1$, $T(n') \le Cn'$. Then we must prove $T(n) \le Cn$.

By the induction hypothesis, we have

$$T(n) = 3T(n/4) + n/2 \le 3Cn/4 + n/2$$

$$T(1) = 1$$
, $T(n) = 3T(n/4) + n/2$, n is a power of 4.

Guess: $T(n) \leq Cn$ for all $n \geq 1$ (C to be determined).

Now that we have a good guess, proving it formally is a standard induction.

Base case
$$n = 1$$
: We have $T(1) = 1 \le C \cdot 1$ whenever $C \ge 1$.

Inductive step: Suppose that for all $1 \le n' \le n-1$, $T(n') \le Cn'$. Then we must prove $T(n) \le Cn$.

By the induction hypothesis, we have

$$T(n) = 3T(n/4) + n/2 \le 3Cn/4 + n/2$$

= $Cn - Cn/4 + n/2$

$$T(1) = 1$$
, $T(n) = 3T(n/4) + n/2$, n is a power of 4.

Guess: $T(n) \leq Cn$ for all $n \geq 1$ (C to be determined).

Now that we have a good guess, proving it formally is a standard induction.

Base case
$$n = 1$$
: We have $T(1) = 1 \le C \cdot 1$ whenever $C \ge 1$.

Inductive step: Suppose that for all $1 \le n' \le n-1$, $T(n') \le Cn'$. Then we must prove $T(n) \le Cn$.

By the induction hypothesis, we have

$$T(n) = 3T(n/4) + n/2 \le 3Cn/4 + n/2$$

= $Cn - Cn/4 + n/2 = Cn + (\frac{1}{2} - \frac{C}{4})n$.

$$T(1) = 1$$
, $T(n) = 3T(n/4) + n/2$, n is a power of 4.

Guess: $T(n) \leq Cn$ for all $n \geq 1$ (C to be determined).

Now that we have a good guess, proving it formally is a standard induction.

Base case
$$n = 1$$
: We have $T(1) = 1 < C \cdot 1$ whenever $C > 1$.

Inductive step: Suppose that for all $1 \le n' \le n-1$, $T(n') \le Cn'$. Then we must prove $T(n) \le Cn$.

By the induction hypothesis, we have

$$T(n) = 3T(n/4) + n/2 \le 3Cn/4 + n/2$$

= $Cn - Cn/4 + n/2 = Cn + (\frac{1}{2} - \frac{C}{4})n$.

This is at most Cn iff C > 2.

$$T(1) = 1$$
, $T(n) = 3T(n/4) + n/2$, n is a power of 4.

Guess: $T(n) \leq Cn$ for all $n \geq 1$ (C to be determined).

Now that we have a good guess, proving it formally is a standard induction.

Base case
$$n = 1$$
: We have $T(1) = 1 \le C \cdot 1$ whenever $C \ge 1$.

Inductive step: Suppose that for all $1 \le n' \le n-1$, $T(n') \le Cn'$. Then we must prove $T(n) \leq Cn$.

By the induction hypothesis, we have

$$T(n) = 3T(n/4) + n/2 \le 3Cn/4 + n/2$$

= $Cn - Cn/4 + n/2 = Cn + (\frac{1}{2} - \frac{C}{4})n$.

This is at most Cn iff C > 2.

We have proved $T(n) \leq 2n$ for all $n \geq 1$, and hence T(n) = O(n).

John Lapinskas Lecture 14 March 18th 2020 6/17

Now consider the recurrence

$$T(1) = 1$$
, $T(n) = 4T(n/2) + n^2$, n is a power of 2.

Now consider the recurrence

$$T(1)=1,$$
 $T(n)=4T(n/2)+n^2,$ n is a power of 2.
 n
 $n/2$
 $n/4$
 n

Now consider the recurrence

$$T(1) = 1, \qquad T(n) = 4T(n/2) + n^2, \qquad n \text{ is a power of } 2.$$

$$n$$

$$n/2$$

$$n/4$$

Except for the bottom, level i has 4^{i-1} nodes, each with cost $(n/2^{i-1})^2$.

Now consider the recurrence

$$T(1)=1,$$
 $T(n)=4T(n/2)+n^2,$ n is a power of 2.
 n
 $n/2$
 $n/4$
 n

Except for the bottom, level i has 4^{i-1} nodes, each with cost $(n/2^{i-1})^2$. Let #(levels) = t. Then $n/2^{t-1} = 1$, so we have $t = 1 + \log n$.

7 / 17

$$T(1) = 1,$$
 $T(n) = 4T(n/2) + n^2,$ n is a power of 2.

There are $1 + \log n$ levels in total.

For $i \leq \log n$, level i has 4^{i-1} nodes with cost $(n/2^{i-1})^2$ each.

Level $1 + \log n$ has $4^{\log n} = 2^{2 \log n} = n^2$ nodes with time cost 1 each.

T(n) is the total cost over the whole tree, so

$$T(n) = \sum_{i=1}^{\log n} 4^{i-1} \cdot \left(\frac{n}{2^{i-1}}\right)^2 + n^2$$

$$T(1) = 1,$$
 $T(n) = 4T(n/2) + n^2,$ n is a power of 2.

There are $1 + \log n$ levels in total.

For $i \leq \log n$, level i has 4^{i-1} nodes with cost $(n/2^{i-1})^2$ each.

Level $1 + \log n$ has $4^{\log n} = 2^{2 \log n} = n^2$ nodes with time cost 1 each.

T(n) is the total cost over the whole tree, so

$$T(n) = \sum_{i=1}^{\log n} 4^{i-1} \cdot \left(\frac{n}{2^{i-1}}\right)^2 + n^2 = \sum_{i=1}^{\log n} n^2 + n^2$$

$$T(1) = 1,$$
 $T(n) = 4T(n/2) + n^2,$ n is a power of 2.

There are $1 + \log n$ levels in total.

For $i \leq \log n$, level i has 4^{i-1} nodes with cost $(n/2^{i-1})^2$ each.

Level $1 + \log n$ has $4^{\log n} = 2^{2 \log n} = n^2$ nodes with time cost 1 each.

T(n) is the total cost over the whole tree, so

$$T(n) = \sum_{i=1}^{\log n} 4^{i-1} \cdot \left(\frac{n}{2^{i-1}}\right)^2 + n^2 = \sum_{i=1}^{\log n} n^2 + n^2$$
$$= (\log(n) + 1)n^2$$

$$T(1) = 1,$$
 $T(n) = 4T(n/2) + n^2,$ n is a power of 2.

There are $1 + \log n$ levels in total.

For $i \leq \log n$, level i has 4^{i-1} nodes with cost $(n/2^{i-1})^2$ each.

Level $1 + \log n$ has $4^{\log n} = 2^{2 \log n} = n^2$ nodes with time cost 1 each.

T(n) is the total cost over the whole tree, so

$$T(n) = \sum_{i=1}^{\log n} 4^{i-1} \cdot \left(\frac{n}{2^{i-1}}\right)^2 + n^2 = \sum_{i=1}^{\log n} n^2 + n^2$$
$$= (\log(n) + 1)n^2 = O(n^2 \log n).$$

$$T(1) = 1,$$
 $T(n) = 4T(n/2) + n^2,$ n is a power of 2.

There are $1 + \log n$ levels in total.

For $i \le \log n$, level i has 4^{i-1} nodes with cost $(n/2^{i-1})^2$ each.

Level $1 + \log n$ has $4^{\log n} = 2^{2 \log n} = n^2$ nodes with time cost 1 each.

T(n) is the total cost over the whole tree, so

$$T(n) = \sum_{i=1}^{\log n} 4^{i-1} \cdot \left(\frac{n}{2^{i-1}}\right)^2 + n^2 = \sum_{i=1}^{\log n} n^2 + n^2$$
$$= (\log(n) + 1)n^2 = O(n^2 \log n).$$

In other words, every level costs the same.

$$T(1) = 1$$
, $T(n) = 4T(n/2) + n^2$, *n* is a power of 2.

Guess: $T(n) \le Cn^2 \log n$ for all $n \ge 2$ (C to be determined).

$$T(1) = 1$$
, $T(n) = 4T(n/2) + n^2$, n is a power of 2.

Guess: $T(n) \le Cn^2 \log n$ for all $n \ge 2$ (C to be determined).

Base case
$$n = 2$$
: We have $T(2) = 4T(1) + 4 = 8$, and $C \cdot 2^2 \log 2 = 4C$.
So $T(2) \le Cn^2 \log n$ whenever $C \ge 2$.

$$T(1) = 1$$
, $T(n) = 4T(n/2) + n^2$, n is a power of 2.

Guess: $T(n) \le Cn^2 \log n$ for all $n \ge 2$ (C to be determined).

Base case
$$n = 2$$
: We have $T(2) = 4T(1) + 4 = 8$, and $C \cdot 2^2 \log 2 = 4C$.
So $T(2) \le Cn^2 \log n$ whenever $C \ge 2$.

Inductive step: Suppose that for all $2 \le n' \le n-1$, $T(n') \le Cn'^2 \log n'$. Then we must prove $T(n) \le Cn^2 \log n$.

$$T(1) = 1$$
, $T(n) = 4T(n/2) + n^2$, n is a power of 2.

Guess: $T(n) \le Cn^2 \log n$ for all $n \ge 2$ (C to be determined).

Base case
$$n = 2$$
: We have $T(2) = 4T(1) + 4 = 8$, and $C \cdot 2^2 \log 2 = 4C$.
So $T(2) \le Cn^2 \log n$ whenever $C \ge 2$.

Inductive step: Suppose that for all $2 \le n' \le n-1$, $T(n') \le Cn'^2 \log n'$. Then we must prove $T(n) \le Cn^2 \log n$.

$$T(n) = 4T(n/2) + n^2$$

$$T(1) = 1$$
, $T(n) = 4T(n/2) + n^2$, n is a power of 2.

Guess: $T(n) \le Cn^2 \log n$ for all $n \ge 2$ (C to be determined).

Base case
$$n = 2$$
: We have $T(2) = 4T(1) + 4 = 8$, and $C \cdot 2^2 \log 2 = 4C$.
So $T(2) \le Cn^2 \log n$ whenever $C \ge 2$.

Inductive step: Suppose that for all $2 \le n' \le n-1$, $T(n') \le Cn'^2 \log n'$. Then we must prove $T(n) \le Cn^2 \log n$.

$$T(n) = 4T(n/2) + n^2 \le 4C(\frac{n}{2})^2 \log(\frac{n}{2}) + n^2$$

$$T(1) = 1$$
, $T(n) = 4T(n/2) + n^2$, *n* is a power of 2.

Guess: $T(n) \le Cn^2 \log n$ for all $n \ge 2$ (C to be determined).

Base case
$$n = 2$$
: We have $T(2) = 4T(1) + 4 = 8$, and $C \cdot 2^2 \log 2 = 4C$.
So $T(2) \le Cn^2 \log n$ whenever $C \ge 2$.

Inductive step: Suppose that for all $2 \le n' \le n-1$, $T(n') \le Cn'^2 \log n'$. Then we must prove $T(n) \le Cn^2 \log n$.

By the induction hypothesis, we have

$$T(n) = 4T(n/2) + n^2 \le 4C(\frac{n}{2})^2 \log(\frac{n}{2}) + n^2$$

= $Cn^2(\log n - 1) + n^2$

$$T(1) = 1$$
, $T(n) = 4T(n/2) + n^2$, *n* is a power of 2.

Guess: $T(n) \le Cn^2 \log n$ for all $n \ge 2$ (C to be determined).

Base case
$$n = 2$$
: We have $T(2) = 4T(1) + 4 = 8$, and $C \cdot 2^2 \log 2 = 4C$.
So $T(2) \le Cn^2 \log n$ whenever $C \ge 2$.

Inductive step: Suppose that for all $2 \le n' \le n-1$, $T(n') \le Cn'^2 \log n'$. Then we must prove $T(n) \le Cn^2 \log n$.

By the induction hypothesis, we have

$$T(n) = 4T(n/2) + n^2 \le 4C(\frac{n}{2})^2 \log(\frac{n}{2}) + n^2$$

= $Cn^2(\log n - 1) + n^2 = Cn^2 \log n + (1 - C)n^2$.

$$T(1) = 1$$
, $T(n) = 4T(n/2) + n^2$, *n* is a power of 2.

Guess: $T(n) \le Cn^2 \log n$ for all $n \ge 2$ (C to be determined).

Base case
$$n = 2$$
: We have $T(2) = 4T(1) + 4 = 8$, and $C \cdot 2^2 \log 2 = 4C$.
So $T(2) \le Cn^2 \log n$ whenever $C \ge 2$.

Inductive step: Suppose that for all $2 \le n' \le n-1$, $T(n') \le Cn'^2 \log n'$. Then we must prove $T(n) \le Cn^2 \log n$.

By the induction hypothesis, we have

$$T(n) = 4T(n/2) + n^2 \le 4C(\frac{n}{2})^2 \log(\frac{n}{2}) + n^2$$

= $Cn^2(\log n - 1) + n^2 = Cn^2 \log n + (1 - C)n^2$.

This is at most $Cn^2 \log n$ iff $C \ge 1$.

$$T(1) = 1$$
, $T(n) = 4T(n/2) + n^2$, *n* is a power of 2.

Guess: $T(n) \le Cn^2 \log n$ for all $n \ge 2$ (C to be determined).

Base case
$$n = 2$$
: We have $T(2) = 4T(1) + 4 = 8$, and $C \cdot 2^2 \log 2 = 4C$.
So $T(2) \le Cn^2 \log n$ whenever $C \ge 2$.

Inductive step: Suppose that for all $2 \le n' \le n-1$, $T(n') \le Cn'^2 \log n'$. Then we must prove $T(n) \le Cn^2 \log n$.

By the induction hypothesis, we have

$$T(n) = 4T(n/2) + n^2 \le 4C\left(\frac{n}{2}\right)^2 \log\left(\frac{n}{2}\right) + n^2$$

= $Cn^2(\log n - 1) + n^2 = Cn^2 \log n + (1 - C)n^2$.

This is at most $Cn^2 \log n$ iff $C \ge 1$.

We have proved $T(n) \le 2n^2 \log n$ for all $n \ge 2$, so $T(n) = O(n^2 \log n)$. \square

Now consider the recurrence

$$T(1) = 1,$$
 $T(n) = 2T(n/3) + \sqrt{n},$ n is a power of 3.

Now consider the recurrence

$$T(1) = 1,$$
 $T(n) = 2T(n/3) + \sqrt{n},$ n is a power of 3.
 n
 $n/3$
 $\sqrt{n/3}$
 $\sqrt{n/9}$
 $\sqrt{n/9}$
 $\sqrt{n/9}$
 $\sqrt{n/9}$
 $\sqrt{n/9}$
 $\sqrt{n/9}$
 $\sqrt{n/9}$
 $\sqrt{n/9}$

Now consider the recurrence

Except for the bottom, level i has 2^{i-1} nodes, each with cost $\sqrt{n/3^{i-1}}$.

Now consider the recurrence

Except for the bottom, level i has 2^{i-1} nodes, each with cost $\sqrt{n/3^{i-1}}$. Let #(levels) = t. Then $n/3^{t-1} = 1$, so we have $t = 1 + \log_3 n$.

$$T(1) = 1,$$
 $T(n) = 2T(n/3) + \sqrt{n},$ n is a power of 3.

There are $1 + \log_3 n$ levels in total.

For $i \le \log_3 n$, level i has 2^{i-1} nodes with cost $\sqrt{n/3^{i-1}}$ each. Level $1 + \log_3 n$ has $2^{\log_3 n}$ nodes with time cost 1 each.

T(n) is the total cost over the whole tree, so

$$T(n) = \sum_{i=1}^{\log_3 n} 2^{i-1} \cdot \sqrt{n/3^{i-1}} + 2^{\log_3 n}$$

$$T(1) = 1,$$
 $T(n) = 2T(n/3) + \sqrt{n},$ n is a power of 3.

There are $1 + \log_3 n$ levels in total.

For $i \leq \log_3 n$, level i has 2^{i-1} nodes with cost $\sqrt{n/3^{i-1}}$ each. Level $1 + \log_3 n$ has $2^{\log_3 n}$ nodes with time cost 1 each.

T(n) is the total cost over the whole tree, so

$$T(n) = \sum_{i=1}^{\log_3 n} 2^{i-1} \cdot \sqrt{n/3^{i-1}} + 2^{\log_3 n} = \sqrt{n} \sum_{i=1}^{\log_3 n} \left(\frac{2}{\sqrt{3}}\right)^{i-1} + 2^{\log_3 n}.$$

Lecture 14 March 18th 2020 11/17

$$T(1) = 1,$$
 $T(n) = 2T(n/3) + \sqrt{n},$ n is a power of 3.

There are $1 + \log_3 n$ levels in total.

For $i \le \log_3 n$, level i has 2^{i-1} nodes with cost $\sqrt{n/3^{i-1}}$ each. Level $1 + \log_3 n$ has $2^{\log_3 n}$ nodes with time cost 1 each.

T(n) is the total cost over the whole tree, so

$$T(n) = \sum_{i=1}^{\log_3 n} 2^{i-1} \cdot \sqrt{n/3^{i-1}} + 2^{\log_3 n} = \sqrt{n} \sum_{i=1}^{\log_3 n} \left(\frac{2}{\sqrt{3}}\right)^{i-1} + 2^{\log_3 n}.$$

Since $2 > \sqrt{3}$, this sum is dominated by its last term; formally, we have

$$\sum_{i=1}^{\log_3 n} \left(\frac{2}{\sqrt{3}}\right)^{i-1}$$

$$T(1) = 1,$$
 $T(n) = 2T(n/3) + \sqrt{n},$ n is a power of 3.

There are $1 + \log_3 n$ levels in total.

For $i \leq \log_3 n$, level i has 2^{i-1} nodes with cost $\sqrt{n/3^{i-1}}$ each. Level $1 + \log_3 n$ has $2^{\log_3 n}$ nodes with time cost 1 each.

T(n) is the total cost over the whole tree, so

$$T(n) = \sum_{i=1}^{\log_3 n} 2^{i-1} \cdot \sqrt{n/3^{i-1}} + 2^{\log_3 n} = \sqrt{n} \sum_{i=1}^{\log_3 n} \left(\frac{2}{\sqrt{3}}\right)^{i-1} + 2^{\log_3 n}.$$

Since $2 > \sqrt{3}$, this sum is dominated by its last term; formally, we have

$$\sum_{i=1}^{\log_3 n} \left(\frac{2}{\sqrt{3}}\right)^{i-1} = \left(\frac{2}{\sqrt{3}}\right)^{\log_3 n - 1} \sum_{j=0}^{\log_3 - 1} \left(\frac{\sqrt{3}}{2}\right)^j$$

$$T(1) = 1,$$
 $T(n) = 2T(n/3) + \sqrt{n},$ n is a power of 3.

There are $1 + \log_3 n$ levels in total.

For $i \leq \log_3 n$, level i has 2^{i-1} nodes with cost $\sqrt{n/3^{i-1}}$ each. Level $1 + \log_3 n$ has $2^{\log_3 n}$ nodes with time cost 1 each.

T(n) is the total cost over the whole tree, so

$$T(n) = \sum_{i=1}^{\log_3 n} 2^{i-1} \cdot \sqrt{n/3^{i-1}} + 2^{\log_3 n} = \sqrt{n} \sum_{i=1}^{\log_3 n} \left(\frac{2}{\sqrt{3}}\right)^{i-1} + 2^{\log_3 n}.$$

Since $2 > \sqrt{3}$, this sum is dominated by its last term; formally, we have

$$\sum_{i=1}^{\log_3 n} \left(\frac{2}{\sqrt{3}}\right)^{i-1} = \left(\frac{2}{\sqrt{3}}\right)^{\log_3 n - 1} \sum_{i=0}^{\log_3 - 1} \left(\frac{\sqrt{3}}{2}\right)^j = \Theta\left(\left(\frac{2}{\sqrt{3}}\right)^{\log_3 n}\right).$$

$$T(n) = \sqrt{n} \sum_{i=1}^{\log_3 n} \left(\frac{2}{\sqrt{3}}\right)^{i-1} + 2^{\log_3 n},$$
$$\sum_{i=1}^{\log_3 n} \left(\frac{2}{\sqrt{3}}\right)^{i-1} = \Theta\left(\left(\frac{2}{\sqrt{3}}\right)^{\log_3 n}\right).$$

$$T(n) = \sqrt{n} \sum_{i=1}^{\log_3 n} \left(\frac{2}{\sqrt{3}}\right)^{i-1} + 2^{\log_3 n},$$
$$\sum_{i=1}^{\log_3 n} \left(\frac{2}{\sqrt{3}}\right)^{i-1} = \Theta\left(\left(\frac{2}{\sqrt{3}}\right)^{\log_3 n}\right).$$

We have

$$\sqrt{n} \left(\frac{2}{\sqrt{3}}\right)^{\log_3 n} = \sqrt{n} \cdot \frac{2^{\log_3 n}}{3^{(\log_3 n)/2}}$$

$$T(n) = \sqrt{n} \sum_{i=1}^{\log_3 n} \left(\frac{2}{\sqrt{3}}\right)^{i-1} + 2^{\log_3 n},$$
$$\sum_{i=1}^{\log_3 n} \left(\frac{2}{\sqrt{3}}\right)^{i-1} = \Theta\left(\left(\frac{2}{\sqrt{3}}\right)^{\log_3 n}\right).$$

We have

$$\sqrt{n} \left(\frac{2}{\sqrt{3}}\right)^{\log_3 n} = \sqrt{n} \cdot \frac{2^{\log_3 n}}{3^{(\log_3 n)/2}} = \sqrt{n} \cdot \frac{2^{\log_3 n}}{n^{1/2}}$$

$$T(n) = \sqrt{n} \sum_{i=1}^{\log_3 n} \left(\frac{2}{\sqrt{3}}\right)^{i-1} + 2^{\log_3 n},$$
$$\sum_{i=1}^{\log_3 n} \left(\frac{2}{\sqrt{3}}\right)^{i-1} = \Theta\left(\left(\frac{2}{\sqrt{3}}\right)^{\log_3 n}\right).$$

We have

$$\sqrt{n} \left(\frac{2}{\sqrt{3}}\right)^{\log_3 n} = \sqrt{n} \cdot \frac{2^{\log_3 n}}{3^{(\log_3 n)/2}} = \sqrt{n} \cdot \frac{2^{\log_3 n}}{n^{1/2}} = 2^{\log_3 n}.$$

$$T(n) = \sqrt{n} \sum_{i=1}^{\log_3 n} \left(\frac{2}{\sqrt{3}}\right)^{i-1} + 2^{\log_3 n},$$
$$\sum_{i=1}^{\log_3 n} \left(\frac{2}{\sqrt{3}}\right)^{i-1} = \Theta\left(\left(\frac{2}{\sqrt{3}}\right)^{\log_3 n}\right).$$

We have

$$\sqrt{n} \left(\frac{2}{\sqrt{3}}\right)^{\log_3 n} = \sqrt{n} \cdot \frac{2^{\log_3 n}}{3^{(\log_3 n)/2}} = \sqrt{n} \cdot \frac{2^{\log_3 n}}{n^{1/2}} = 2^{\log_3 n}.$$

So $T(n) = O(2^{\log_3 n}) = O(n^{1/\log(3)})$, and the leaves dominate.

$$T(1) = 1$$
, $T(n) = 2T(n/3) + \sqrt{n}$, n is a power of 3.

Guess: $T(n) \le Cn^{1/\log(3)}$ for all $n \ge 1$ (C to be determined).

$$T(1) = 1,$$
 $T(n) = 2T(n/3) + \sqrt{n},$ n is a power of 3.

Guess: $T(n) \le Cn^{1/\log(3)}$ for all $n \ge 1$ (C to be determined).

Base case n = 1: We have $T(1) = 1 \le C \cdot 1^{1/\log(3)}$ whenever C > 1.

$$T(1) = 1,$$
 $T(n) = 2T(n/3) + \sqrt{n},$ n is a power of 3.

Guess: $T(n) \le Cn^{1/\log(3)}$ for all $n \ge 1$ (C to be determined).

Base case n = 1: We have $T(1) = 1 \le C \cdot 1^{1/\log(3)}$ whenever $C \ge 1$.

Inductive step: Suppose that for all $1 \le n' \le n-1$, $T(n') \le Cn'^{1/\log(3)}$. Then we must prove $T(n) \le Cn^{1/\log(3)}$.

$$T(1) = 1,$$
 $T(n) = 2T(n/3) + \sqrt{n},$ n is a power of 3.

Guess: $T(n) \leq Cn^{1/\log(3)}$ for all $n \geq 1$ (C to be determined).

Base case n = 1: We have $T(1) = 1 \le C \cdot 1^{1/\log(3)}$ whenever $C \ge 1$.

Inductive step: Suppose that for all $1 \le n' \le n-1$, $T(n') \le Cn'^{1/\log(3)}$. Then we must prove $T(n) \le Cn^{1/\log(3)}$.

$$T(n) = 2T(n/3) + \sqrt{n}$$

$$T(1) = 1,$$
 $T(n) = 2T(n/3) + \sqrt{n},$ n is a power of 3.

Guess: $T(n) \le Cn^{1/\log(3)}$ for all $n \ge 1$ (C to be determined).

Base case n = 1: We have $T(1) = 1 \le C \cdot 1^{1/\log(3)}$ whenever $C \ge 1$.

Inductive step: Suppose that for all $1 \le n' \le n-1$, $T(n') \le Cn'^{1/\log(3)}$. Then we must prove $T(n) \le Cn^{1/\log(3)}$.

$$T(n) = 2T(n/3) + \sqrt{n} \le 2C(n/3)^{1/\log(3)} + \sqrt{n}$$

$$T(1) = 1,$$
 $T(n) = 2T(n/3) + \sqrt{n},$ n is a power of 3.

Guess: $T(n) \le Cn^{1/\log(3)}$ for all $n \ge 1$ (C to be determined).

Base case n = 1: We have $T(1) = 1 \le C \cdot 1^{1/\log(3)}$ whenever $C \ge 1$.

Inductive step: Suppose that for all $1 \le n' \le n-1$, $T(n') \le Cn'^{1/\log(3)}$. Then we must prove $T(n) \le Cn^{1/\log(3)}$.

$$T(n) = 2T(n/3) + \sqrt{n} \le 2C(n/3)^{1/\log(3)} + \sqrt{n}$$
$$= \frac{2}{3^{1/\log(3)}} Cn^{1/\log(3)} + \sqrt{n}.$$

$$T(1) = 1,$$
 $T(n) = 2T(n/3) + \sqrt{n},$ n is a power of 3.

Guess: $T(n) \le Cn^{1/\log(3)}$ for all $n \ge 1$ (C to be determined).

Base case n = 1: We have $T(1) = 1 \le C \cdot 1^{1/\log(3)}$ whenever C > 1.

Inductive step: Suppose that for all $1 \le n' \le n-1$, $T(n') \le Cn'^{1/\log(3)}$. Then we must prove $T(n) < Cn^{1/\log(3)}$.

By the induction hypothesis, we have

$$T(n) = 2T(n/3) + \sqrt{n} \le 2C(n/3)^{1/\log(3)} + \sqrt{n}$$
$$= \frac{2}{3^{1/\log(3)}}Cn^{1/\log(3)} + \sqrt{n}.$$

We have $3^{1/\log(3)} = 2^{\log(3)/\log(3)} = 2$, so $T(n) < Cn^{1/\log(3)} + \sqrt{n}$.

Lecture 14 March 18th 2020 13 / 17

$$T(1) = 1,$$
 $T(n) = 2T(n/3) + \sqrt{n},$ n is a power of 3.

Guess: $T(n) \leq Cn^{1/\log(3)}$ for all $n \geq 1$ (C to be determined).

Base case n = 1: We have $T(1) = 1 \le C \cdot 1^{1/\log(3)}$ whenever $C \ge 1$. \checkmark

Inductive step: Suppose that for all $1 \le n' \le n-1$, $T(n') \le Cn'^{1/\log(3)}$. Then we must prove $T(n) \le Cn^{1/\log(3)}$.

By the induction hypothesis, we have

$$T(n) = 2T(n/3) + \sqrt{n} \le 2C(n/3)^{1/\log(3)} + \sqrt{n}$$
$$= \frac{2}{3^{1/\log(3)}} Cn^{1/\log(3)} + \sqrt{n}.$$

We have $3^{1/\log(3)} = 2^{\log(3)/\log(3)} = 2$, so $T(n) \le Cn^{1/\log(3)} + \sqrt{n}$... which isn't quite good enough.

But we know how to deal with this: add a correction term!

$$T(1) = 1,$$
 $T(n) = 2T(n/3) + \sqrt{n},$ n is a power of 3.

Guess: $T(n) \le Cn^{1/\log(3)} - \sqrt{n}$ for all $n \ge 1$ (C to be determined).

John Lapinskas Lecture 14 March 18th 2020 14 / 17

$$T(1) = 1,$$
 $T(n) = 2T(n/3) + \sqrt{n},$ n is a power of 3.

Guess:
$$T(n) \le Cn^{1/\log(3)} - \sqrt{n}$$
 for all $n \ge 1$ (C to be determined).

Base case
$$n=1$$
: We have $T(1)=1$, and $C \cdot 1^{1/\log(3)} - \sqrt{1} = C-1$. So the base case works whenever $C>2$.

John Lapinskas Lecture 14 March 18th 2020 14 / 17

$$T(1) = 1,$$
 $T(n) = 2T(n/3) + \sqrt{n},$ n is a power of 3.

Guess: $T(n) \le Cn^{1/\log(3)} - \sqrt{n}$ for all $n \ge 1$ (C to be determined).

Base case n=1: We have T(1)=1, and $C \cdot 1^{1/\log(3)} - \sqrt{1} = C-1$. So the base case works whenever $C \geq 2$.

Inductive step: Suppose for all $n' \le n-1$, $T(n') \le Cn'^{1/\log(3)} - \sqrt{n'}$. Then we must prove $T(n) \le Cn^{1/\log(3)} - \sqrt{n}$.

John Lapinskas Lecture 14 March 18th 2020 14/17

$$T(1) = 1,$$
 $T(n) = 2T(n/3) + \sqrt{n},$ *n* is a power of 3.

Guess: $T(n) \le Cn^{1/\log(3)} - \sqrt{n}$ for all $n \ge 1$ (C to be determined).

Base case n=1: We have T(1)=1, and $C \cdot 1^{1/\log(3)} - \sqrt{1} = C-1$. So the base case works whenever $C \geq 2$.

Inductive step: Suppose for all $n' \le n-1$, $T(n') \le Cn'^{1/\log(3)} - \sqrt{n'}$. Then we must prove $T(n) \le Cn^{1/\log(3)} - \sqrt{n}$.

By the induction hypothesis, we have

$$T(n) = 2T(n/3) + \sqrt{n}$$

$$T(1) = 1,$$
 $T(n) = 2T(n/3) + \sqrt{n},$ *n* is a power of 3.

Guess: $T(n) \le Cn^{1/\log(3)} - \sqrt{n}$ for all $n \ge 1$ (C to be determined).

Base case n=1: We have T(1)=1, and $C \cdot 1^{1/\log(3)} - \sqrt{1} = C-1$. So the base case works whenever $C \geq 2$.

Inductive step: Suppose for all $n' \le n-1$, $T(n') \le Cn'^{1/\log(3)} - \sqrt{n'}$. Then we must prove $T(n) \le Cn^{1/\log(3)} - \sqrt{n}$.

By the induction hypothesis, we have

$$T(n) = 2T(n/3) + \sqrt{n} \le 2C(n/3)^{1/\log(3)} - 2\sqrt{n/3} + \sqrt{n}$$

John Lapinskas Lecture 14 March 18th 2020 14 / 17

$$T(1) = 1,$$
 $T(n) = 2T(n/3) + \sqrt{n},$ n is a power of 3.

Guess: $T(n) \le Cn^{1/\log(3)} - \sqrt{n}$ for all $n \ge 1$ (C to be determined).

Base case n=1: We have T(1)=1, and $C \cdot 1^{1/\log(3)} - \sqrt{1} = C-1$. So the base case works whenever $C \geq 2$.

Inductive step: Suppose for all $n' \le n-1$, $T(n') \le Cn'^{1/\log(3)} - \sqrt{n'}$. Then we must prove $T(n) \le Cn^{1/\log(3)} - \sqrt{n}$.

By the induction hypothesis, we have

$$T(n) = 2T(n/3) + \sqrt{n} \le 2C(n/3)^{1/\log(3)} - 2\sqrt{n/3} + \sqrt{n}$$

$$\le \frac{2}{3^{1/\log(3)}}Cn^{1/\log(3)}.$$

John Lapinskas Lecture 14 March 18th 2020 14/17

$$T(1) = 1,$$
 $T(n) = 2T(n/3) + \sqrt{n},$ *n* is a power of 3.

Guess: $T(n) \le Cn^{1/\log(3)} - \sqrt{n}$ for all $n \ge 1$ (C to be determined).

Base case n=1: We have T(1)=1, and $C \cdot 1^{1/\log(3)} - \sqrt{1} = C-1$. So the base case works whenever $C \geq 2$.

Inductive step: Suppose for all $n' \le n-1$, $T(n') \le Cn'^{1/\log(3)} - \sqrt{n'}$. Then we must prove $T(n) \le Cn^{1/\log(3)} - \sqrt{n}$.

By the induction hypothesis, we have

$$T(n) = 2T(n/3) + \sqrt{n} \le 2C(n/3)^{1/\log(3)} - 2\sqrt{n/3} + \sqrt{n}$$

$$\le \frac{2}{3^{1/\log(3)}}Cn^{1/\log(3)}.$$

We have $3^{1/\log(3)} = 2^{\log(3)/\log(3)} = 2$, so this is at most $Cn^{1/\log(3)}$ always.

John Lapinskas Lecture 14 March 18th 2020 14/17

$$T(1) = 1$$
, $T(n) = 2T(n/3) + \sqrt{n}$, *n* is a power of 3.

Guess: $T(n) \le Cn^{1/\log(3)} - \sqrt{n}$ for all $n \ge 1$ (C to be determined).

Base case n=1: We have T(1)=1, and $C \cdot 1^{1/\log(3)} - \sqrt{1} = C-1$. So the base case works whenever $C \geq 2$.

Inductive step: Suppose for all $n' \le n-1$, $T(n') \le Cn'^{1/\log(3)} - \sqrt{n'}$. Then we must prove $T(n) \le Cn^{1/\log(3)} - \sqrt{n}$.

By the induction hypothesis, we have

$$T(n) = 2T(n/3) + \sqrt{n} \le 2C(n/3)^{1/\log(3)} - 2\sqrt{n/3} + \sqrt{n}$$

$$\le \frac{2}{3^{1/\log(3)}} Cn^{1/\log(3)}.$$

We have $3^{1/\log(3)} = 2^{\log(3)/\log(3)} = 2$, so this is at most $Cn^{1/\log(3)}$ always.

We have proved $T(n) \leq 2n^{1/\log(3)} - \sqrt{n}$ for all n, so $T(n) = O(n^{1/\log(3)})$.

John Lapinskas Lecture 14 March 18th 2020

Recap

These examples fell into three categories:

- For $T(n) = 2T(n/3) + \sqrt{n}$, the leaves dominated.
- 2 For $T(n) = 4T(n/2) + n^2$, the levels were all equal.
- **3** For T(n) = 3T(n/4) + n/2, the root dominated.

These examples fell into three categories:

- For $T(n) = 2T(n/3) + \sqrt{n}$, the leaves dominated.
- ② For $T(n) = 4T(n/2) + n^2$, the levels were all equal.
- 3 For T(n) = 3T(n/4) + n/2, the root dominated.

Wouldn't it be nice if we could put **any** recurrence relation of the form T(n) = aT(n/b) + f(n) into one of those three categories?

Then we could just write the answer down without having to solve it...

These examples fell into three categories:

- For $T(n) = 2T(n/3) + \sqrt{n}$, the leaves dominated.
- ② For $T(n) = 4T(n/2) + n^2$, the levels were all equal.
- **3** For T(n) = 3T(n/4) + n/2, the root dominated.

Wouldn't it be nice if we could put **any** recurrence relation of the form T(n) = aT(n/b) + f(n) into one of those three categories?

Then we could just write the answer down without having to solve it...

Actually, we can!

The Master Theorem (non-examinable!)

The Master Theorem: Suppose T(1) = O(1) and, for n > 1, T(n) = aT(n/b) + f(n) for some constants a, b > 0 and some function $f : \mathbb{N} \to \mathbb{R}$. Let $\xi = \log_b a$ be the **critical exponent**. Then:

- If $f(n) = O(n^{\xi \varepsilon})$ for some $\varepsilon > 0$, then $T(n) = \Theta(n^{\xi})$. In other words, the leaves dominate.
- ② If $f(n) = \Theta(n^{\xi})$, then $T(n) = \Theta(n^{\xi} \log n)$. In other words, the levels are roughly equal.
- **3** If $f(n) = \Omega(n^{\xi+\varepsilon})$ for some $\varepsilon > 0$ and af(n/b) = O(f(n)), then $T(n) = \Theta(f(n))$. In other words, the root dominates.

John Lapinskas Lecture 14 March 18th 2020 16 / 17

The Master Theorem (non-examinable!)

The Master Theorem: Suppose T(1) = O(1) and, for n > 1, T(n) = aT(n/b) + f(n) for some constants a, b > 0 and some function $f: \mathbb{N} \to \mathbb{R}$. Let $\xi = \log_b a$ be the **critical exponent**. Then:

- **1** If $f(n) = O(n^{\xi \varepsilon})$ for some $\varepsilon > 0$, then $T(n) = \Theta(n^{\xi})$. In other words, the leaves dominate.
- ② If $f(n) = \Theta(n^{\xi})$, then $T(n) = \Theta(n^{\xi} \log n)$. In other words, the levels are roughly equal.
- 3 If $f(n) = \Omega(n^{\xi+\varepsilon})$ for some $\varepsilon > 0$ and af(n/b) = O(f(n)), then $T(n) = \Theta(f(n))$. In other words, the root dominates.

The condition af(n/b) = O(f(n)) in the last case always holds when f is a polynomial in n, but rules out weird cases like

$$f(n) = \begin{cases} n & \text{if } n \text{ is odd,} \\ n^2 & \text{if } n \text{ is even.} \end{cases}$$

John Lapinskas Lecture 14 March 18th 2020 16 / 17

Next time: Christian's triumphant return!*

*Return may not be triumphant or even physical, rules and restrictions apply.