Solving Recurrences II COMS10007 2020, Lecture 14

Dr. John Lapinskas (substituting for Dr. Christian Konrad)

March 18th 2020

This lecture we'll ignore O-notation and divisibility issues, and focus on examples of the recurrences themselves. Consider the recurrence

$$T(1) = 1$$
, $T(n) = 3T(n/4) + n/2$, *n* is a power of 4.

Step 1: Use the recursion tree method to get a good guess at a solution. As with the mergesort analysis, we view this as a tree.

Each recursive invocation corresponds to a child node — so the root has three children, each of which has three children, and so on.

Each node gets labelled with the non-recursive running time at that step, and then T(n) is the sum of all the labels in the tree.

$$T(1) = 1$$
, $T(n) = 3T(n/4) + n/2$, *n* is a power of 4.

$$T(64) = 3T(16) + 32$$

John Lapinskas

March 18th 2020 3 / 17

$$T(1) = 1$$
, $T(n) = 3T(n/4) + n/2$, *n* is a power of 4.

$$T(64) = 3T(16) + 32 = 9T(4) + 3 \cdot 8 + 32$$

$$T(1) = 1$$
, $T(n) = 3T(n/4) + n/2$, *n* is a power of 4.

$$T(64) = 9T(4) + 3 \cdot 8 + 32$$

$$T(1) = 1$$
, $T(n) = 3T(n/4) + n/2$, *n* is a power of 4.

$$T(64) = 9T(4) + 3 \cdot 8 + 32 = 27T(1) + 9 \cdot 2 + 3 \cdot 8 + 32$$

$$T(1) = 1$$
, $T(n) = 3T(n/4) + n/2$, *n* is a power of 4.

$$T(64) = 27T(1) + 9 \cdot 2 + 3 \cdot 8 + 32$$

$$T(1) = 1$$
, $T(n) = 3T(n/4) + n/2$, *n* is a power of 4.

$$T(64) = 27T(1) + 9 \cdot 2 + 3 \cdot 8 + 32 = 27 \cdot 1 + 9 \cdot 2 + 3 \cdot 8 + 32$$

$$T(1) = 1$$
, $T(n) = 3T(n/4) + n/2$, *n* is a power of 4.

 $T(64) = 27 \cdot 1 + 9 \cdot 2 + 3 \cdot 8 + 32 = 101.$

The general case

Except for the bottom, level *i* has 3^{i-1} nodes, each with cost $n/(2 \cdot 4^{i-1})$.

The general case

Except for the bottom, level *i* has 3^{i-1} nodes, each with cost $n/(2 \cdot 4^{i-1})$. Let #(levels) = t. Then $n/4^{t-1} = 1$, so we have $t = 1 + \log_4 n$.

$$T(1) = 1,$$
 $T(n) = 3T(n/4) + n/2,$ *n* is a power of 4.

For $i \leq \log_4 n$, level *i* has 3^{i-1} nodes with time cost $n/(2 \cdot 4^{i-1})$ each. Level $1 + \log_4 n$ has $3^{\log_4 n}$ nodes with time cost 1 each.

T(n) is the total time cost over the whole tree, so

$$T(n) = \sum_{i=1}^{\log_4 n} \left(\frac{3}{4}\right)^{i-1} \frac{n}{2} + 3^{\log_4 n}.$$

$$T(1) = 1$$
, $T(n) = 3T(n/4) + n/2$, *n* is a power of 4.

For $i \leq \log_4 n$, level *i* has 3^{i-1} nodes with time cost $n/(2 \cdot 4^{i-1})$ each. Level $1 + \log_4 n$ has $3^{\log_4 n}$ nodes with time cost 1 each.

T(n) is the total time cost over the whole tree, so

$$T(n) = \sum_{i=1}^{\log_4 n} \left(\frac{3}{4}\right)^{i-1} \frac{n}{2} + 3^{\log_4 n}.$$

$$\sum_{i=1}^{\log_4 n} \left(\frac{3}{4}\right)^{i-1} \frac{n}{2}$$

$$T(1) = 1$$
, $T(n) = 3T(n/4) + n/2$, *n* is a power of 4.

For $i \leq \log_4 n$, level *i* has 3^{i-1} nodes with time cost $n/(2 \cdot 4^{i-1})$ each. Level $1 + \log_4 n$ has $3^{\log_4 n}$ nodes with time cost 1 each.

T(n) is the total time cost over the whole tree, so

$$T(n) = \sum_{i=1}^{\log_4 n} \left(\frac{3}{4}\right)^{i-1} \frac{n}{2} + 3^{\log_4 n}.$$

$$\sum_{i=1}^{\log_4 n} \left(\frac{3}{4}\right)^{i-1} \frac{n}{2} = \frac{n}{2} \cdot \sum_{i=1}^{\log_4 n} \left(\frac{3}{4}\right)^{i-1}$$

$$T(1) = 1$$
, $T(n) = 3T(n/4) + n/2$, *n* is a power of 4.

For $i \leq \log_4 n$, level *i* has 3^{i-1} nodes with time cost $n/(2 \cdot 4^{i-1})$ each. Level $1 + \log_4 n$ has $3^{\log_4 n}$ nodes with time cost 1 each.

T(n) is the total time cost over the whole tree, so

$$T(n) = \sum_{i=1}^{\log_4 n} \left(\frac{3}{4}\right)^{i-1} \frac{n}{2} + 3^{\log_4 n}.$$

$$\sum_{i=1}^{\log_4 n} \left(\frac{3}{4}\right)^{i-1} \frac{n}{2} = \frac{n}{2} \cdot \sum_{i=1}^{\log_4 n} \left(\frac{3}{4}\right)^{i-1} \le \frac{n}{2} \cdot \sum_{i=0}^{\infty} \left(\frac{3}{4}\right)^i$$

$$T(1) = 1,$$
 $T(n) = 3T(n/4) + n/2,$ *n* is a power of 4.

For $i \leq \log_4 n$, level *i* has 3^{i-1} nodes with time cost $n/(2 \cdot 4^{i-1})$ each. Level $1 + \log_4 n$ has $3^{\log_4 n}$ nodes with time cost 1 each.

T(n) is the total time cost over the whole tree, so

$$T(n) = \sum_{i=1}^{\log_4 n} \left(\frac{3}{4}\right)^{i-1} \frac{n}{2} + 3^{\log_4 n}.$$

$$\sum_{i=1}^{\log_4 n} \left(\frac{3}{4}\right)^{i-1} \frac{n}{2} = \frac{n}{2} \cdot \sum_{i=1}^{\log_4 n} \left(\frac{3}{4}\right)^{i-1} \le \frac{n}{2} \cdot \sum_{i=0}^{\infty} \left(\frac{3}{4}\right)^i = \frac{n}{2} \cdot O(1)$$

$$T(1) = 1,$$
 $T(n) = 3T(n/4) + n/2,$ *n* is a power of 4.

For $i \leq \log_4 n$, level *i* has 3^{i-1} nodes with time cost $n/(2 \cdot 4^{i-1})$ each. Level $1 + \log_4 n$ has $3^{\log_4 n}$ nodes with time cost 1 each.

T(n) is the total time cost over the whole tree, so

$$T(n) = \sum_{i=1}^{\log_4 n} \left(\frac{3}{4}\right)^{i-1} \frac{n}{2} + 3^{\log_4 n}.$$

$$\sum_{i=1}^{\log_4 n} \left(\frac{3}{4}\right)^{i-1} \frac{n}{2} = \frac{n}{2} \cdot \sum_{i=1}^{\log_4 n} \left(\frac{3}{4}\right)^{i-1} \le \frac{n}{2} \cdot \sum_{i=0}^{\infty} \left(\frac{3}{4}\right)^i = \frac{n}{2} \cdot O(1) = O(n).$$

$$T(1) = 1,$$
 $T(n) = 3T(n/4) + n/2,$ *n* is a power of 4.

For $i \leq \log_4 n$, level *i* has 3^{i-1} nodes with time cost $n/(2 \cdot 4^{i-1})$ each. Level $1 + \log_4 n$ has $3^{\log_4 n}$ nodes with time cost 1 each.

T(n) is the total time cost over the whole tree, so

$$T(n) = \sum_{i=1}^{\log_4 n} \left(\frac{3}{4}\right)^{i-1} \frac{n}{2} + 3^{\log_4 n}.$$

Summing the geometric series gives

$$\sum_{i=1}^{\log_4 n} \left(\frac{3}{4}\right)^{i-1} \frac{n}{2} = \frac{n}{2} \cdot \sum_{i=1}^{\log_4 n} \left(\frac{3}{4}\right)^{i-1} \le \frac{n}{2} \cdot \sum_{i=0}^{\infty} \left(\frac{3}{4}\right)^i = \frac{n}{2} \cdot O(1) = O(n).$$

And we have

3^{log}4 *n*

$$T(1) = 1$$
, $T(n) = 3T(n/4) + n/2$, *n* is a power of 4.

For $i \leq \log_4 n$, level *i* has 3^{i-1} nodes with time cost $n/(2 \cdot 4^{i-1})$ each. Level $1 + \log_4 n$ has $3^{\log_4 n}$ nodes with time cost 1 each.

T(n) is the total time cost over the whole tree, so

$$T(n) = \sum_{i=1}^{\log_4 n} \left(\frac{3}{4}\right)^{i-1} \frac{n}{2} + 3^{\log_4 n}.$$

Summing the geometric series gives

$$\sum_{i=1}^{\log_4 n} \left(\frac{3}{4}\right)^{i-1} \frac{n}{2} = \frac{n}{2} \cdot \sum_{i=1}^{\log_4 n} \left(\frac{3}{4}\right)^{i-1} \le \frac{n}{2} \cdot \sum_{i=0}^{\infty} \left(\frac{3}{4}\right)^i = \frac{n}{2} \cdot O(1) = O(n).$$

$$3^{\log_4 n} = 2^{\log(3) \cdot \log_4(n)}$$

$$T(1) = 1$$
, $T(n) = 3T(n/4) + n/2$, *n* is a power of 4.

For $i \leq \log_4 n$, level *i* has 3^{i-1} nodes with time cost $n/(2 \cdot 4^{i-1})$ each. Level $1 + \log_4 n$ has $3^{\log_4 n}$ nodes with time cost 1 each.

T(n) is the total time cost over the whole tree, so

$$T(n) = \sum_{i=1}^{\log_4 n} \left(\frac{3}{4}\right)^{i-1} \frac{n}{2} + 3^{\log_4 n}.$$

Summing the geometric series gives

$$\sum_{i=1}^{\log_4 n} \left(\frac{3}{4}\right)^{i-1} \frac{n}{2} = \frac{n}{2} \cdot \sum_{i=1}^{\log_4 n} \left(\frac{3}{4}\right)^{i-1} \le \frac{n}{2} \cdot \sum_{i=0}^{\infty} \left(\frac{3}{4}\right)^i = \frac{n}{2} \cdot O(1) = O(n).$$

$$3^{\log_4 n} = 2^{\log(3) \cdot \log_4(n)} = 2^{\log(3) \cdot \frac{\log(n)}{\log(4)}}$$

$$T(1) = 1,$$
 $T(n) = 3T(n/4) + n/2,$ *n* is a power of 4.

For $i \leq \log_4 n$, level *i* has 3^{i-1} nodes with time cost $n/(2 \cdot 4^{i-1})$ each. Level $1 + \log_4 n$ has $3^{\log_4 n}$ nodes with time cost 1 each.

T(n) is the total time cost over the whole tree, so

$$T(n) = \sum_{i=1}^{\log_4 n} \left(\frac{3}{4}\right)^{i-1} \frac{n}{2} + 3^{\log_4 n}.$$

Summing the geometric series gives

$$\sum_{i=1}^{\log_4 n} \left(\frac{3}{4}\right)^{i-1} \frac{n}{2} = \frac{n}{2} \cdot \sum_{i=1}^{\log_4 n} \left(\frac{3}{4}\right)^{i-1} \le \frac{n}{2} \cdot \sum_{i=0}^{\infty} \left(\frac{3}{4}\right)^i = \frac{n}{2} \cdot O(1) = O(n).$$

$$3^{\log_4 n} = 2^{\log(3) \cdot \log_4(n)} = 2^{\log(3) \cdot \frac{\log(n)}{\log(4)}} = n^{\frac{\log(3)}{\log(4)}}$$

$$T(1) = 1,$$
 $T(n) = 3T(n/4) + n/2,$ *n* is a power of 4.

For $i \leq \log_4 n$, level *i* has 3^{i-1} nodes with time cost $n/(2 \cdot 4^{i-1})$ each. Level $1 + \log_4 n$ has $3^{\log_4 n}$ nodes with time cost 1 each.

T(n) is the total time cost over the whole tree, so

$$T(n) = \sum_{i=1}^{\log_4 n} \left(\frac{3}{4}\right)^{i-1} \frac{n}{2} + 3^{\log_4 n}.$$

Summing the geometric series gives

$$\sum_{i=1}^{\log_4 n} \left(\frac{3}{4}\right)^{i-1} \frac{n}{2} = \frac{n}{2} \cdot \sum_{i=1}^{\log_4 n} \left(\frac{3}{4}\right)^{i-1} \le \frac{n}{2} \cdot \sum_{i=0}^{\infty} \left(\frac{3}{4}\right)^i = \frac{n}{2} \cdot O(1) = O(n).$$

$$3^{\log_4 n} = 2^{\log(3) \cdot \log_4(n)} = 2^{\log(3) \cdot \frac{\log(n)}{\log(4)}} = n^{\frac{\log(3)}{\log(4)}} = o(n).$$

$$T(1) = 1$$
, $T(n) = 3T(n/4) + n/2$, *n* is a power of 4.

For $i \leq \log_4 n$, level *i* has 3^{i-1} nodes with time cost $n/(2 \cdot 4^{i-1})$ each. Level $1 + \log_4 n$ has $3^{\log_4 n}$ nodes with time cost 1 each.

T(n) is the total time cost over the whole tree, so

$$T(n) = \sum_{i=1}^{\log_4 n} \left(\frac{3}{4}\right)^{i-1} \frac{n}{2} + 3^{\log_4 n}.$$

Summing the geometric series gives

$$\sum_{i=1}^{\log_4 n} \left(\frac{3}{4}\right)^{i-1} \frac{n}{2} = \frac{n}{2} \cdot \sum_{i=1}^{\log_4 n} \left(\frac{3}{4}\right)^{i-1} \le \frac{n}{2} \cdot \sum_{i=0}^{\infty} \left(\frac{3}{4}\right)^i = \frac{n}{2} \cdot O(1) = O(n).$$

And we have

$$3^{\log_4 n} = 2^{\log(3) \cdot \log_4(n)} = 2^{\log(3) \cdot \frac{\log(n)}{\log(4)}} = n^{\frac{\log(3)}{\log(4)}} = o(n).$$

So overall, we expect T(n) = O(n). In other words, the root dominates.

$$T(1) = 1$$
, $T(n) = 3T(n/4) + n/2$, *n* is a power of 4.

Guess: $T(n) \leq Cn$ for all $n \geq 1$ (*C* to be determined).

Now that we have a good guess, proving it formally is a standard induction.

Guess: $T(n) \leq Cn$ for all $n \geq 1$ (*C* to be determined).

Now that we have a good guess, proving it formally is a standard induction. Base case n = 1: We have $T(1) = 1 \le C \cdot 1$ whenever C > 1.

Guess: $T(n) \leq Cn$ for all $n \geq 1$ (*C* to be determined).

Now that we have a good guess, proving it formally is a standard induction.

Base case n = 1: We have $T(1) = 1 \le C \cdot 1$ whenever $C \ge 1$.

Inductive step: Suppose that for all $1 \le n' \le n - 1$, $T(n') \le Cn'$. Then we must prove $T(n) \le Cn$.

Guess: $T(n) \leq Cn$ for all $n \geq 1$ (*C* to be determined).

Now that we have a good guess, proving it formally is a standard induction.

Base case n = 1: We have $T(1) = 1 \le C \cdot 1$ whenever $C \ge 1$.

Inductive step: Suppose that for all $1 \le n' \le n - 1$, $T(n') \le Cn'$. Then we must prove $T(n) \le Cn$.

$$T(n) = 3T(n/4) + n/2$$

Guess: $T(n) \leq Cn$ for all $n \geq 1$ (*C* to be determined).

Now that we have a good guess, proving it formally is a standard induction.

Base case n = 1: We have $T(1) = 1 \le C \cdot 1$ whenever $C \ge 1$.

Inductive step: Suppose that for all $1 \le n' \le n - 1$, $T(n') \le Cn'$. Then we must prove $T(n) \le Cn$.

$$T(n) = 3T(n/4) + n/2 \le 3Cn/4 + n/2$$

Guess: $T(n) \leq Cn$ for all $n \geq 1$ (*C* to be determined).

Now that we have a good guess, proving it formally is a standard induction.

Base case n = 1: We have $T(1) = 1 \le C \cdot 1$ whenever $C \ge 1$.

Inductive step: Suppose that for all $1 \le n' \le n - 1$, $T(n') \le Cn'$. Then we must prove $T(n) \le Cn$.

$$T(n) = 3T(n/4) + n/2 \le 3Cn/4 + n/2$$

= Cn - Cn/4 + n/2

Guess: $T(n) \leq Cn$ for all $n \geq 1$ (*C* to be determined).

Now that we have a good guess, proving it formally is a standard induction.

Base case n = 1: We have $T(1) = 1 \le C \cdot 1$ whenever $C \ge 1$.

Inductive step: Suppose that for all $1 \le n' \le n - 1$, $T(n') \le Cn'$. Then we must prove $T(n) \le Cn$.

$$T(n) = 3T(n/4) + n/2 \le 3Cn/4 + n/2$$

= $Cn - Cn/4 + n/2 = Cn + (\frac{1}{2} - \frac{C}{4})n$.

$$T(1) = 1,$$
 $T(n) = 3T(n/4) + n/2,$ *n* is a power of 4.

Guess: $T(n) \leq Cn$ for all $n \geq 1$ (*C* to be determined).

Now that we have a good guess, proving it formally is a standard induction.

Base case n = 1: We have $T(1) = 1 \le C \cdot 1$ whenever $C \ge 1$.

Inductive step: Suppose that for all $1 \le n' \le n - 1$, $T(n') \le Cn'$. Then we must prove $T(n) \le Cn$.

By the induction hypothesis, we have

$$T(n) = 3T(n/4) + n/2 \le 3Cn/4 + n/2$$

= Cn - Cn/4 + n/2 = Cn + $(\frac{1}{2} - \frac{C}{4})n$.

This is at most Cn iff $C \ge 2$.

$$T(1) = 1$$
, $T(n) = 3T(n/4) + n/2$, *n* is a power of 4.

Guess: $T(n) \leq Cn$ for all $n \geq 1$ (*C* to be determined).

Now that we have a good guess, proving it formally is a standard induction.

Base case
$$n = 1$$
: We have $T(1) = 1 \le C \cdot 1$ whenever $C \ge 1$.

Inductive step: Suppose that for all $1 \le n' \le n - 1$, $T(n') \le Cn'$. Then we must prove $T(n) \le Cn$.

By the induction hypothesis, we have

$$T(n) = 3T(n/4) + n/2 \le 3Cn/4 + n/2$$

= $Cn - Cn/4 + n/2 = Cn + (\frac{1}{2} - \frac{C}{4})n.$

This is at most Cn iff $C \geq 2$.

We have proved $T(n) \leq 2n$ for all $n \geq 1$, and hence T(n) = O(n).

Now consider the recurrence

$$T(1) = 1$$
, $T(n) = 4T(n/2) + n^2$, *n* is a power of 2.

Now consider the recurrence

Now consider the recurrence

Except for the bottom, level *i* has 4^{i-1} nodes, each with cost $(n/2^{i-1})^2$.

Now consider the recurrence

Except for the bottom, level *i* has 4^{i-1} nodes, each with cost $(n/2^{i-1})^2$. Let #(levels) = t. Then $n/2^{t-1} = 1$, so we have $t = 1 + \log n$.
$$T(1) = 1,$$
 $T(n) = 4T(n/2) + n^2,$ *n* is a power of 2.

$$T(n) = \sum_{i=1}^{\log n} 4^{i-1} \cdot \left(\frac{n}{2^{i-1}}\right)^2 + n^2$$

$$T(1) = 1,$$
 $T(n) = 4T(n/2) + n^2,$ *n* is a power of 2.

$$T(n) = \sum_{i=1}^{\log n} 4^{i-1} \cdot \left(\frac{n}{2^{i-1}}\right)^2 + n^2 = \sum_{i=1}^{\log n} n^2 + n^2$$

$$T(1) = 1,$$
 $T(n) = 4T(n/2) + n^2,$ *n* is a power of 2.

$$T(n) = \sum_{i=1}^{\log n} 4^{i-1} \cdot \left(\frac{n}{2^{i-1}}\right)^2 + n^2 = \sum_{i=1}^{\log n} n^2 + n^2$$
$$= (\log(n) + 1)n^2$$

$$T(1) = 1,$$
 $T(n) = 4T(n/2) + n^2,$ *n* is a power of 2.

$$T(n) = \sum_{i=1}^{\log n} 4^{i-1} \cdot \left(\frac{n}{2^{i-1}}\right)^2 + n^2 = \sum_{i=1}^{\log n} n^2 + n^2$$
$$= (\log(n) + 1)n^2 = O(n^2 \log n).$$

$$T(1) = 1,$$
 $T(n) = 4T(n/2) + n^2,$ *n* is a power of 2.

T(n) is the total cost over the whole tree, so

$$T(n) = \sum_{i=1}^{\log n} 4^{i-1} \cdot \left(\frac{n}{2^{i-1}}\right)^2 + n^2 = \sum_{i=1}^{\log n} n^2 + n^2$$
$$= (\log(n) + 1)n^2 = O(n^2 \log n).$$

In other words, every level costs the same.

$$T(1) = 1$$
, $T(n) = 4T(n/2) + n^2$, *n* is a power of 2.

Guess: $T(n) \leq Cn^2 \log n$ for all $n \geq 2$ (*C* to be determined).

$$T(1) = 1$$
, $T(n) = 4T(n/2) + n^2$, *n* is a power of 2.

Guess: $T(n) \leq Cn^2 \log n$ for all $n \geq 2$ (*C* to be determined).

Base case n = 2: We have T(2) = 4T(1) + 4 = 8, and $C \cdot 2^2 \log 2 = 4C$. So $T(2) \le Cn^2 \log n$ whenever $C \ge 2$.

$$T(1) = 1$$
, $T(n) = 4T(n/2) + n^2$, *n* is a power of 2.

Guess: $T(n) \leq Cn^2 \log n$ for all $n \geq 2$ (*C* to be determined).

Base case n = 2: We have T(2) = 4T(1) + 4 = 8, and $C \cdot 2^2 \log 2 = 4C$. So $T(2) \le Cn^2 \log n$ whenever $C \ge 2$.

Inductive step: Suppose that for all $2 \le n' \le n - 1$, $T(n') \le Cn'^2 \log n'$. Then we must prove $T(n) \le Cn^2 \log n$.

$$T(1) = 1$$
, $T(n) = 4T(n/2) + n^2$, *n* is a power of 2.

Guess: $T(n) \leq Cn^2 \log n$ for all $n \geq 2$ (*C* to be determined).

Base case
$$n = 2$$
: We have $T(2) = 4T(1) + 4 = 8$, and $C \cdot 2^2 \log 2 = 4C$.
So $T(2) \le Cn^2 \log n$ whenever $C \ge 2$.

Inductive step: Suppose that for all $2 \le n' \le n - 1$, $T(n') \le Cn'^2 \log n'$. Then we must prove $T(n) \le Cn^2 \log n$.

$$T(n) = 4T(n/2) + n^2$$

$$T(1) = 1$$
, $T(n) = 4T(n/2) + n^2$, *n* is a power of 2.

Guess: $T(n) \leq Cn^2 \log n$ for all $n \geq 2$ (*C* to be determined).

Base case
$$n = 2$$
: We have $T(2) = 4T(1) + 4 = 8$, and $C \cdot 2^2 \log 2 = 4C$.
So $T(2) \le Cn^2 \log n$ whenever $C \ge 2$.

Inductive step: Suppose that for all $2 \le n' \le n - 1$, $T(n') \le Cn'^2 \log n'$. Then we must prove $T(n) \le Cn^2 \log n$.

$$T(n) = 4T(n/2) + n^2 \le 4C\left(\frac{n}{2}\right)^2 \log\left(\frac{n}{2}\right) + n^2$$

$$T(1) = 1$$
, $T(n) = 4T(n/2) + n^2$, *n* is a power of 2.

Guess: $T(n) \leq Cn^2 \log n$ for all $n \geq 2$ (*C* to be determined).

Base case
$$n = 2$$
: We have $T(2) = 4T(1) + 4 = 8$, and $C \cdot 2^2 \log 2 = 4C$.
So $T(2) \le Cn^2 \log n$ whenever $C \ge 2$.

Inductive step: Suppose that for all $2 \le n' \le n - 1$, $T(n') \le Cn'^2 \log n'$. Then we must prove $T(n) \le Cn^2 \log n$.

$$T(n) = 4T(n/2) + n^2 \le 4C(\frac{n}{2})^2 \log(\frac{n}{2}) + n^2$$

= $Cn^2(\log n - 1) + n^2$

$$T(1) = 1$$
, $T(n) = 4T(n/2) + n^2$, *n* is a power of 2.

Guess: $T(n) \leq Cn^2 \log n$ for all $n \geq 2$ (*C* to be determined).

Base case
$$n = 2$$
: We have $T(2) = 4T(1) + 4 = 8$, and $C \cdot 2^2 \log 2 = 4C$.
So $T(2) \le Cn^2 \log n$ whenever $C \ge 2$.

Inductive step: Suppose that for all $2 \le n' \le n - 1$, $T(n') \le Cn'^2 \log n'$. Then we must prove $T(n) \le Cn^2 \log n$.

$$T(n) = 4T(n/2) + n^2 \le 4C(\frac{n}{2})^2 \log(\frac{n}{2}) + n^2$$

= $Cn^2(\log n - 1) + n^2 = Cn^2 \log n + (1 - C)n^2.$

$$T(1) = 1$$
, $T(n) = 4T(n/2) + n^2$, *n* is a power of 2.

Guess: $T(n) \leq Cn^2 \log n$ for all $n \geq 2$ (*C* to be determined).

Base case
$$n = 2$$
: We have $T(2) = 4T(1) + 4 = 8$, and $C \cdot 2^2 \log 2 = 4C$.
So $T(2) \le Cn^2 \log n$ whenever $C \ge 2$.

Inductive step: Suppose that for all $2 \le n' \le n - 1$, $T(n') \le Cn'^2 \log n'$. Then we must prove $T(n) \le Cn^2 \log n$.

By the induction hypothesis, we have

$$T(n) = 4T(n/2) + n^2 \le 4C(\frac{n}{2})^2 \log(\frac{n}{2}) + n^2$$

= $Cn^2(\log n - 1) + n^2 = Cn^2 \log n + (1 - C)n^2.$

This is at most $Cn^2 \log n$ iff $C \ge 1$.

$$T(1) = 1$$
, $T(n) = 4T(n/2) + n^2$, *n* is a power of 2.

Guess: $T(n) \leq Cn^2 \log n$ for all $n \geq 2$ (*C* to be determined).

Base case
$$n = 2$$
: We have $T(2) = 4T(1) + 4 = 8$, and $C \cdot 2^2 \log 2 = 4C$.
So $T(2) \le Cn^2 \log n$ whenever $C \ge 2$.

Inductive step: Suppose that for all $2 \le n' \le n - 1$, $T(n') \le Cn'^2 \log n'$. Then we must prove $T(n) \le Cn^2 \log n$.

By the induction hypothesis, we have

$$T(n) = 4T(n/2) + n^2 \le 4C(\frac{n}{2})^2 \log(\frac{n}{2}) + n^2$$

= $Cn^2(\log n - 1) + n^2 = Cn^2 \log n + (1 - C)n^2.$

This is at most $Cn^2 \log n$ iff $C \ge 1$.

We have proved $T(n) \leq 2n^2 \log n$ for all $n \geq 2$, so $T(n) = O(n^2 \log n)$.

Now consider the recurrence

$$T(1) = 1$$
, $T(n) = 2T(n/3) + \sqrt{n}$, *n* is a power of 3.

Now consider the recurrence

Now consider the recurrence

Except for the bottom, level *i* has 2^{i-1} nodes, each with cost $\sqrt{n/3^{i-1}}$.

Now consider the recurrence

Except for the bottom, level *i* has 2^{i-1} nodes, each with cost $\sqrt{n/3^{i-1}}$. Let #(levels) = t. Then $n/3^{t-1} = 1$, so we have $t = 1 + \log_3 n$.

Analysing the tree

$$T(1) = 1,$$
 $T(n) = 2T(n/3) + \sqrt{n},$ *n* is a power of 3.

There are $1 + \log_3 n$ levels in total. For $i \leq \log_3 n$, level *i* has 2^{i-1} nodes with cost $\sqrt{n/3^{i-1}}$ each. Level $1 + \log_3 n$ has $2^{\log_3 n}$ nodes with time cost 1 each.

$$T(n) = \sum_{i=1}^{\log_3 n} 2^{i-1} \cdot \sqrt{n/3^{i-1}} + 2^{\log_3 n}$$

Analysing the tree

$$T(1) = 1,$$
 $T(n) = 2T(n/3) + \sqrt{n},$ *n* is a power of 3.

There are $1 + \log_3 n$ levels in total. For $i \leq \log_3 n$, level *i* has 2^{i-1} nodes with cost $\sqrt{n/3^{i-1}}$ each. Level $1 + \log_3 n$ has $2^{\log_3 n}$ nodes with time cost 1 each.

$$T(n) = \sum_{i=1}^{\log_3 n} 2^{i-1} \cdot \sqrt{n/3^{i-1}} + 2^{\log_3 n} = \sqrt{n} \sum_{i=1}^{\log_3 n} \left(\frac{2}{\sqrt{3}}\right)^{i-1} + 2^{\log_3 n}.$$

$$T(1) = 1,$$
 $T(n) = 2T(n/3) + \sqrt{n},$ *n* is a power of 3.

There are $1 + \log_3 n$ levels in total. For $i \leq \log_3 n$, level *i* has 2^{i-1} nodes with cost $\sqrt{n/3^{i-1}}$ each. Level $1 + \log_3 n$ has $2^{\log_3 n}$ nodes with time cost 1 each.

T(n) is the total cost over the whole tree, so

$$T(n) = \sum_{i=1}^{\log_3 n} 2^{i-1} \cdot \sqrt{n/3^{i-1}} + 2^{\log_3 n} = \sqrt{n} \sum_{i=1}^{\log_3 n} \left(\frac{2}{\sqrt{3}}\right)^{i-1} + 2^{\log_3 n}.$$

Since $2 > \sqrt{3}$, this sum is dominated by its last term; formally, we have

$$\sum_{i=1}^{\log_3 n} \left(\frac{2}{\sqrt{3}}\right)^{i-1}$$

$$T(1) = 1,$$
 $T(n) = 2T(n/3) + \sqrt{n},$ *n* is a power of 3.

There are $1 + \log_3 n$ levels in total. For $i \leq \log_3 n$, level *i* has 2^{i-1} nodes with cost $\sqrt{n/3^{i-1}}$ each. Level $1 + \log_3 n$ has $2^{\log_3 n}$ nodes with time cost 1 each.

T(n) is the total cost over the whole tree, so

$$T(n) = \sum_{i=1}^{\log_3 n} 2^{i-1} \cdot \sqrt{n/3^{i-1}} + 2^{\log_3 n} = \sqrt{n} \sum_{i=1}^{\log_3 n} \left(\frac{2}{\sqrt{3}}\right)^{i-1} + 2^{\log_3 n}.$$

Since $2 > \sqrt{3}$, this sum is dominated by its last term; formally, we have

$$\sum_{i=1}^{\log_3 n} \left(\frac{2}{\sqrt{3}}\right)^{i-1} = \left(\frac{2}{\sqrt{3}}\right)^{\log_3 n-1} \sum_{j=0}^{\log_3 n-1} \left(\frac{\sqrt{3}}{2}\right)^j$$

I

$$T(1) = 1,$$
 $T(n) = 2T(n/3) + \sqrt{n},$ *n* is a power of 3.

There are $1 + \log_3 n$ levels in total. For $i \leq \log_3 n$, level *i* has 2^{i-1} nodes with cost $\sqrt{n/3^{i-1}}$ each. Level $1 + \log_3 n$ has $2^{\log_3 n}$ nodes with time cost 1 each.

T(n) is the total cost over the whole tree, so

$$T(n) = \sum_{i=1}^{\log_3 n} 2^{i-1} \cdot \sqrt{n/3^{i-1}} + 2^{\log_3 n} = \sqrt{n} \sum_{i=1}^{\log_3 n} \left(\frac{2}{\sqrt{3}}\right)^{i-1} + 2^{\log_3 n}.$$

Since $2 > \sqrt{3}$, this sum is dominated by its last term; formally, we have

$$\sum_{i=1}^{\log_3 n} \left(\frac{2}{\sqrt{3}}\right)^{i-1} = \left(\frac{2}{\sqrt{3}}\right)^{\log_3 n-1} \sum_{j=0}^{\log_3 -1} \left(\frac{\sqrt{3}}{2}\right)^j = \Theta\left(\left(\frac{2}{\sqrt{3}}\right)^{\log_3 n}\right).$$

I

$$T(n) = \sqrt{n} \sum_{i=1}^{\log_3 n} \left(\frac{2}{\sqrt{3}}\right)^{i-1} + 2^{\log_3 n},$$
$$\sum_{i=1}^{\log_3 n} \left(\frac{2}{\sqrt{3}}\right)^{i-1} = \Theta\left(\left(\frac{2}{\sqrt{3}}\right)^{\log_3 n}\right).$$

$$T(n) = \sqrt{n} \sum_{i=1}^{\log_3 n} \left(\frac{2}{\sqrt{3}}\right)^{i-1} + 2^{\log_3 n},$$
$$\sum_{i=1}^{\log_3 n} \left(\frac{2}{\sqrt{3}}\right)^{i-1} = \Theta\left(\left(\frac{2}{\sqrt{3}}\right)^{\log_3 n}\right).$$

We have

$$\sqrt{n}\left(\frac{2}{\sqrt{3}}\right)^{\log_3 n} = \sqrt{n} \cdot \frac{2^{\log_3 n}}{3^{(\log_3 n)/2}}$$

$$T(n) = \sqrt{n} \sum_{i=1}^{\log_3 n} \left(\frac{2}{\sqrt{3}}\right)^{i-1} + 2^{\log_3 n},$$
$$\sum_{i=1}^{\log_3 n} \left(\frac{2}{\sqrt{3}}\right)^{i-1} = \Theta\left(\left(\frac{2}{\sqrt{3}}\right)^{\log_3 n}\right).$$

We have

$$\sqrt{n} \left(\frac{2}{\sqrt{3}}\right)^{\log_3 n} = \sqrt{n} \cdot \frac{2^{\log_3 n}}{3^{(\log_3 n)/2}} = \sqrt{n} \cdot \frac{2^{\log_3 n}}{n^{1/2}}$$

$$T(n) = \sqrt{n} \sum_{i=1}^{\log_3 n} \left(\frac{2}{\sqrt{3}}\right)^{i-1} + 2^{\log_3 n},$$
$$\sum_{i=1}^{\log_3 n} \left(\frac{2}{\sqrt{3}}\right)^{i-1} = \Theta\left(\left(\frac{2}{\sqrt{3}}\right)^{\log_3 n}\right).$$

We have

$$\sqrt{n} \left(\frac{2}{\sqrt{3}}\right)^{\log_3 n} = \sqrt{n} \cdot \frac{2^{\log_3 n}}{3^{(\log_3 n)/2}} = \sqrt{n} \cdot \frac{2^{\log_3 n}}{n^{1/2}} = 2^{\log_3 n}.$$

$$T(n) = \sqrt{n} \sum_{i=1}^{\log_3 n} \left(\frac{2}{\sqrt{3}}\right)^{i-1} + 2^{\log_3 n},$$
$$\sum_{i=1}^{\log_3 n} \left(\frac{2}{\sqrt{3}}\right)^{i-1} = \Theta\left(\left(\frac{2}{\sqrt{3}}\right)^{\log_3 n}\right).$$

We have

$$\sqrt{n} \left(\frac{2}{\sqrt{3}}\right)^{\log_3 n} = \sqrt{n} \cdot \frac{2^{\log_3 n}}{3^{(\log_3 n)/2}} = \sqrt{n} \cdot \frac{2^{\log_3 n}}{n^{1/2}} = 2^{\log_3 n}$$

So $T(n) = O(2^{\log_3 n}) = O(n^{1/\log(3)})$, and the leaves dominate.

$$T(1) = 1$$
, $T(n) = 2T(n/3) + \sqrt{n}$, *n* is a power of 3.

Guess: $T(n) \leq Cn^{1/\log(3)}$ for all $n \geq 1$ (*C* to be determined).

$$T(1) = 1$$
, $T(n) = 2T(n/3) + \sqrt{n}$, *n* is a power of 3.

Guess: $T(n) \leq Cn^{1/\log(3)}$ for all $n \geq 1$ (*C* to be determined).

Base case n = 1: We have $T(1) = 1 \le C \cdot 1^{1/\log(3)}$ whenever $C \ge 1$. \checkmark

$$T(1) = 1$$
, $T(n) = 2T(n/3) + \sqrt{n}$, *n* is a power of 3.

Guess: $T(n) \leq Cn^{1/\log(3)}$ for all $n \geq 1$ (*C* to be determined).

Base case n = 1: We have $T(1) = 1 \le C \cdot 1^{1/\log(3)}$ whenever $C \ge 1$. \checkmark

Inductive step: Suppose that for all $1 \le n' \le n - 1$, $T(n') \le Cn'^{1/\log(3)}$. Then we must prove $T(n) \le Cn^{1/\log(3)}$.

$$T(1) = 1$$
, $T(n) = 2T(n/3) + \sqrt{n}$, *n* is a power of 3.

Guess: $T(n) \leq Cn^{1/\log(3)}$ for all $n \geq 1$ (*C* to be determined).

Base case n = 1: We have $T(1) = 1 \le C \cdot 1^{1/\log(3)}$ whenever $C \ge 1$. \checkmark

Inductive step: Suppose that for all $1 \le n' \le n - 1$, $T(n') \le Cn'^{1/\log(3)}$. Then we must prove $T(n) \le Cn^{1/\log(3)}$.

$$T(n)=2T(n/3)+\sqrt{n}$$

$$T(1) = 1, \qquad T(n) = 2T(n/3) + \sqrt{n}, \qquad n \text{ is a power of 3.}$$

Guess: $T(n) \le Cn^{1/\log(3)}$ for all $n \ge 1$ (C to be determined).

Base case n = 1: We have $T(1) = 1 \le C \cdot 1^{1/\log(3)}$ whenever $C \ge 1$.

Inductive step: Suppose that for all $1 \le n' \le n - 1$, $T(n') \le Cn'^{1/\log(3)}$. Then we must prove $T(n) \le Cn^{1/\log(3)}$.

$$T(n) = 2T(n/3) + \sqrt{n} \le 2C(n/3)^{1/\log(3)} + \sqrt{n}$$

$$T(1) = 1, \qquad T(n) = 2T(n/3) + \sqrt{n}, \qquad n \text{ is a power of 3.}$$

Guess: $T(n) \le Cn^{1/\log(3)}$ for all $n \ge 1$ (C to be determined).

Base case n = 1: We have $T(1) = 1 \le C \cdot 1^{1/\log(3)}$ whenever $C \ge 1$.

Inductive step: Suppose that for all $1 \le n' \le n - 1$, $T(n') \le Cn'^{1/\log(3)}$. Then we must prove $T(n) \le Cn^{1/\log(3)}$.

$$T(n) = 2T(n/3) + \sqrt{n} \le 2C(n/3)^{1/\log(3)} + \sqrt{n}$$
$$= \frac{2}{3^{1/\log(3)}} Cn^{1/\log(3)} + \sqrt{n}.$$

$$T(1) = 1, \qquad T(n) = 2T(n/3) + \sqrt{n}, \qquad n \text{ is a power of 3.}$$

Guess: $T(n) \le Cn^{1/\log(3)}$ for all $n \ge 1$ (C to be determined).

Base case n = 1: We have $T(1) = 1 \le C \cdot 1^{1/\log(3)}$ whenever $C \ge 1$.

Inductive step: Suppose that for all $1 \le n' \le n - 1$, $T(n') \le Cn'^{1/\log(3)}$. Then we must prove $T(n) \le Cn^{1/\log(3)}$.

By the induction hypothesis, we have

$$T(n) = 2T(n/3) + \sqrt{n} \le 2C(n/3)^{1/\log(3)} + \sqrt{n}$$
$$= \frac{2}{3^{1/\log(3)}}Cn^{1/\log(3)} + \sqrt{n}.$$

We have $3^{1/\log(3)} = 2^{\log(3)/\log(3)} = 2$, so $T(n) \le Cn^{1/\log(3)} + \sqrt{n}$.

$$T(1) = 1, \qquad T(n) = 2T(n/3) + \sqrt{n}, \qquad n \text{ is a power of 3.}$$

Guess: $T(n) \le Cn^{1/\log(3)}$ for all $n \ge 1$ (C to be determined).

Base case n = 1: We have $T(1) = 1 \le C \cdot 1^{1/\log(3)}$ whenever $C \ge 1$. \checkmark

Inductive step: Suppose that for all $1 \le n' \le n - 1$, $T(n') \le Cn'^{1/\log(3)}$. Then we must prove $T(n) \le Cn^{1/\log(3)}$.

By the induction hypothesis, we have

$$T(n) = 2T(n/3) + \sqrt{n} \le 2C(n/3)^{1/\log(3)} + \sqrt{n}$$
$$= \frac{2}{3^{1/\log(3)}} Cn^{1/\log(3)} + \sqrt{n}.$$

We have $3^{1/\log(3)} = 2^{\log(3)/\log(3)} = 2$, so $T(n) \le Cn^{1/\log(3)} + \sqrt{n}$... which isn't quite good enough.

But we know how to deal with this: add a correction term!
$$T(1) = 1,$$
 $T(n) = 2T(n/3) + \sqrt{n},$ *n* is a power of 3.

Guess: $T(n) \leq Cn^{1/\log(3)} - 10\sqrt{n}$ for all $n \geq 1$ (*C* to be determined).

$$T(1) = 1,$$
 $T(n) = 2T(n/3) + \sqrt{n},$ *n* is a power of 3.

Guess: $T(n) \leq Cn^{1/\log(3)} - 10\sqrt{n}$ for all $n \geq 1$ (*C* to be determined).

Base case n = 1: We have T(1) = 1, and $C \cdot 1^{1/\log(3)} - 10\sqrt{1} = C - 10$. So the base case works whenever C > 11.

$$T(1) = 1,$$
 $T(n) = 2T(n/3) + \sqrt{n},$ *n* is a power of 3.

Guess: $T(n) \leq Cn^{1/\log(3)} - 10\sqrt{n}$ for all $n \geq 1$ (*C* to be determined).

Base case n = 1: We have T(1) = 1, and $C \cdot 1^{1/\log(3)} - 10\sqrt{1} = C - 10$. So the base case works whenever $C \ge 11$.

Inductive step: Suppose for all $n' \le n-1$, $T(n') \le Cn'^{1/\log(3)} - \sqrt{n'}$. Then we must prove $T(n) \le Cn^{1/\log(3)} - \sqrt{n}$.

$$T(1) = 1,$$
 $T(n) = 2T(n/3) + \sqrt{n},$ *n* is a power of 3.

Guess: $T(n) \leq Cn^{1/\log(3)} - 10\sqrt{n}$ for all $n \geq 1$ (*C* to be determined).

Base case n = 1: We have T(1) = 1, and $C \cdot 1^{1/\log(3)} - 10\sqrt{1} = C - 10$. So the base case works whenever $C \ge 11$.

Inductive step: Suppose for all $n' \le n-1$, $T(n') \le Cn'^{1/\log(3)} - \sqrt{n'}$. Then we must prove $T(n) \le Cn^{1/\log(3)} - \sqrt{n}$.

By the induction hypothesis, we have

 $T(n) = 2T(n/3) + \sqrt{n}$

$$T(1) = 1,$$
 $T(n) = 2T(n/3) + \sqrt{n},$ *n* is a power of 3.

Guess: $T(n) \leq Cn^{1/\log(3)} - 10\sqrt{n}$ for all $n \geq 1$ (C to be determined).

Base case n = 1: We have T(1) = 1, and $C \cdot 1^{1/\log(3)} - 10\sqrt{1} = C - 10$. So the base case works whenever $C \ge 11$.

Inductive step: Suppose for all $n' \le n-1$, $T(n') \le Cn'^{1/\log(3)} - \sqrt{n'}$. Then we must prove $T(n) \le Cn^{1/\log(3)} - \sqrt{n}$.

By the induction hypothesis, we have

$$T(n) = 2T(n/3) + \sqrt{n} \le 2C(n/3)^{1/\log(3)} - 20\sqrt{n/3} + \sqrt{n}$$

$$T(1) = 1,$$
 $T(n) = 2T(n/3) + \sqrt{n},$ *n* is a power of 3.

Guess: $T(n) \leq Cn^{1/\log(3)} - 10\sqrt{n}$ for all $n \geq 1$ (C to be determined).

- Base case n = 1: We have T(1) = 1, and $C \cdot 1^{1/\log(3)} 10\sqrt{1} = C 10$. So the base case works whenever $C \ge 11$.
- Inductive step: Suppose for all $n' \le n-1$, $T(n') \le Cn'^{1/\log(3)} \sqrt{n'}$. Then we must prove $T(n) \le Cn^{1/\log(3)} - \sqrt{n}$.

By the induction hypothesis, we have

$$T(n) = 2T(n/3) + \sqrt{n} \le 2C(n/3)^{1/\log(3)} - 20\sqrt{n/3} + \sqrt{n}$$
$$\le \frac{2}{3^{1/\log(3)}}Cn^{1/\log(3)} - \left(\frac{20}{\sqrt{3}} - 1\right)\sqrt{n}.$$

$$T(1) = 1,$$
 $T(n) = 2T(n/3) + \sqrt{n},$ *n* is a power of 3.

Guess: $T(n) \leq Cn^{1/\log(3)} - 10\sqrt{n}$ for all $n \geq 1$ (C to be determined).

- Base case n = 1: We have T(1) = 1, and $C \cdot 1^{1/\log(3)} 10\sqrt{1} = C 10$. So the base case works whenever $C \ge 11$.
- Inductive step: Suppose for all $n' \le n-1$, $T(n') \le Cn'^{1/\log(3)} \sqrt{n'}$. Then we must prove $T(n) \le Cn^{1/\log(3)} - \sqrt{n}$.

By the induction hypothesis, we have

$$T(n) = 2T(n/3) + \sqrt{n} \le 2C(n/3)^{1/\log(3)} - 20\sqrt{n/3} + \sqrt{n}$$
$$\le \frac{2}{3^{1/\log(3)}}Cn^{1/\log(3)} - \left(\frac{20}{\sqrt{3}} - 1\right)\sqrt{n}.$$
We have $3^{1/\log(3)} = 2^{\log(3)/\log(3)} = 2$, and $\frac{20}{\sqrt{3}} - 1 > 10$, so this is at most $Cn^{1/\log(3)} - 10\sqrt{n}$ always.

$$T(1) = 1,$$
 $T(n) = 2T(n/3) + \sqrt{n},$ *n* is a power of 3.

Guess: $T(n) \leq Cn^{1/\log(3)} - 10\sqrt{n}$ for all $n \geq 1$ (C to be determined).

- Base case n = 1: We have T(1) = 1, and $C \cdot 1^{1/\log(3)} 10\sqrt{1} = C 10$. So the base case works whenever $C \ge 11$.
- Inductive step: Suppose for all $n' \le n 1$, $T(n') \le Cn'^{1/\log(3)} \sqrt{n'}$. Then we must prove $T(n) \le Cn^{1/\log(3)} - \sqrt{n}$.

By the induction hypothesis, we have

$$T(n) = 2T(n/3) + \sqrt{n} \le 2C(n/3)^{1/\log(3)} - 20\sqrt{n/3} + \sqrt{n}$$
$$\le \frac{2}{3^{1/\log(3)}}Cn^{1/\log(3)} - \left(\frac{20}{\sqrt{3}} - 1\right)\sqrt{n}.$$
We have $3^{1/\log(3)} = 2^{\log(3)/\log(3)} = 2$, and $\frac{20}{\sqrt{3}} - 1 > 10$,

so this is at most $Cn^{1/\log(3)} - 10\sqrt{n}$ always.

We have proved $\mathcal{T}(n) \leq 11 n^{1/\log(3)} - 10 \sqrt{n}$ for all n, so we're done.

These examples fell into three categories:

- For $T(n) = 2T(n/3) + \sqrt{n}$, the leaves dominated.
- 2 For $T(n) = 4T(n/2) + n^2$, the levels were all equal.
- So For T(n) = 3T(n/4) + n/2, the root dominated.

These examples fell into three categories:

- For $T(n) = 2T(n/3) + \sqrt{n}$, the leaves dominated.
- 2 For $T(n) = 4T(n/2) + n^2$, the levels were all equal.
- For T(n) = 3T(n/4) + n/2, the root dominated.

Wouldn't it be nice if we could put **any** recurrence relation of the form T(n) = aT(n/b) + f(n) into one of those three categories?

Then we could just write the answer down without having to solve it...

These examples fell into three categories:

- For $T(n) = 2T(n/3) + \sqrt{n}$, the leaves dominated.
- 2 For $T(n) = 4T(n/2) + n^2$, the levels were all equal.
- For T(n) = 3T(n/4) + n/2, the root dominated.

Wouldn't it be nice if we could put **any** recurrence relation of the form T(n) = aT(n/b) + f(n) into one of those three categories?

Then we could just write the answer down without having to solve it... Actually, we can!

The Master Theorem (non-examinable!)

The Master Theorem: Suppose T(1) = O(1) and, for n > 1, T(n) = aT(n/b) + f(n) for some constants a, b > 0 and some function $f : \mathbb{N} \to \mathbb{R}$. Let $\xi = \log_b a$ be the **critical exponent**. Then:

- If $f(n) = O(n^{\xi-\varepsilon})$ for some $\varepsilon > 0$, then $T(n) = \Theta(n^{\xi})$. In other words, the leaves dominate.
- **2** If $f(n) = \Theta(n^{\xi})$, then $T(n) = \Theta(n^{\xi} \log n)$. In other words, **the levels are roughly equal**.
- **3** If $f(n) = \Omega(n^{\xi+\varepsilon})$ for some $\varepsilon > 0$ and af(n/b) = O(f(n)), then $T(n) = \Theta(f(n))$. In other words, the root dominates.

The Master Theorem (non-examinable!)

The Master Theorem: Suppose T(1) = O(1) and, for n > 1, T(n) = aT(n/b) + f(n) for some constants a, b > 0 and some function $f : \mathbb{N} \to \mathbb{R}$. Let $\xi = \log_b a$ be the **critical exponent**. Then:

• If $f(n) = O(n^{\xi-\varepsilon})$ for some $\varepsilon > 0$, then $T(n) = \Theta(n^{\xi})$. In other words, the leaves dominate.

3 If
$$f(n) = \Theta(n^{\xi})$$
, then $T(n) = \Theta(n^{\xi} \log n)$.
In other words, the levels are roughly equal.

■ If
$$f(n) = \Omega(n^{\xi+\varepsilon})$$
 for some $\varepsilon > 0$ and $af(n/b) = O(f(n))$, then $T(n) = \Theta(f(n))$. In other words, the root dominates.

The condition af(n/b) = O(f(n)) in the last case always holds when f is a polynomial in n, but rules out weird cases like

$$f(n) = \begin{cases} n & \text{ if } n \text{ is odd,} \\ n^2 & \text{ if } n \text{ is even.} \end{cases}$$

Next time: Christian's triumphant return!*

*Return may not be triumphant or even physical, rules and restrictions apply.