Lecture 2: O-notation (Why Constants Matter Less) COMS10007 - Algorithms

Dr. Christian Konrad

29.01.2019

Runtime of Algorithms

Runtime of an Algorithm

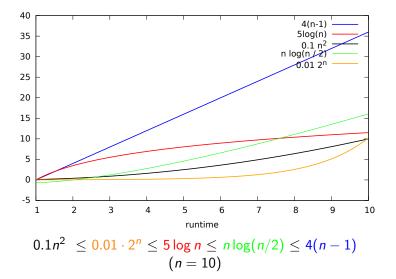
- Function that maps the input length *n* to the number of simple/unit/elementary operations (worst case, best case, average case, runtime on a specific input, ...)
- The number of array accesses in $\ensuremath{\mathrm{PEAK}}$ FINDING represents the number of unit operations very well

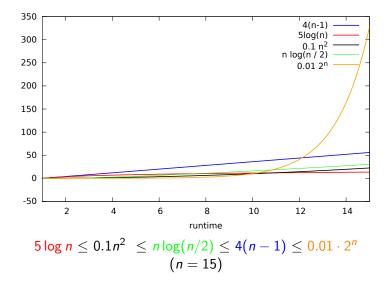
Which runtime is better?

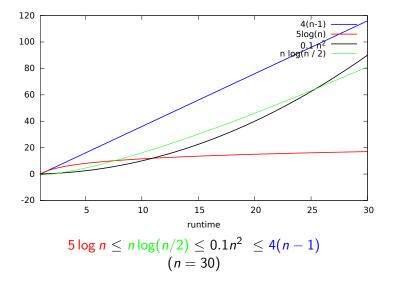
- 4(n-1) (simple peak finding algorithm)
- 5 log *n* (fast peak finding algorithm)
- 0.1*n*²
- $n \log(0.5n)$
- 0.01 · 2ⁿ

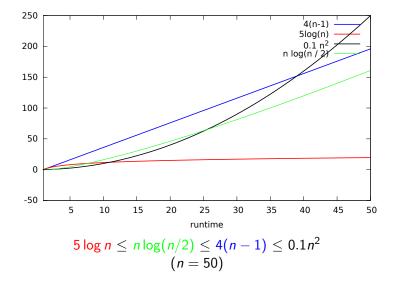
Answer:

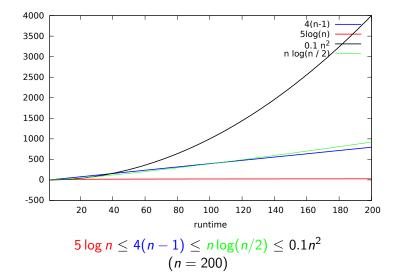
It depends... But there is a favourite











Order Functions Disregarding Constants

Aim: We would like to sort algorithms according to their runtime

Is algorithm A faster than algorithm B?

Asymptotic Complexity

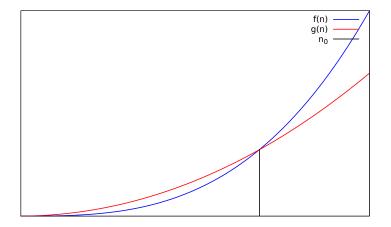
- For large enough *n*, constants seem to matter less
- For small values of *n*, most algorithms are fast anyway (not always true!)

Solution: Consider asymptotic behavior of functions

An increasing function $f : \mathbb{N} \to \mathbb{N}$ grows asymptotically at least as fast as an increasing function $g : \mathbb{N} \to \mathbb{N}$ if there exists an $n_0 \in \mathbb{N}$ such that for every $n \ge n_0$ it holds:

$$f(n) \geq g(n)$$
.

Example: f grows at least as fast as g



Example with Proof

Example: $f(n) = 2n^3$, $g(n) = \frac{1}{2} \cdot 2^n$ Then g(n) grows asymptotically at least as fast as f(n) since for every $n \ge 16$ we have $g(n) \ge f(n)$

Proof: Find values of *n* for which the following holds:

$$\frac{1}{2} \cdot 2^n \geq 2n^3$$

$$2^{n-1} \geq 2^{3\log n+1} \quad (\text{using } n = 2^{\log n})$$

$$n-1 \geq 3\log n+1$$

$$n \geq 3\log n+2$$

This holds for every $n \ge 16$ (which follows from the *racetrack principle*). Thus, we chose any $n_0 \ge 16$.

Racetrack Principle: Let f, g be functions, k an integer and suppose that the following holds:

• $f(k) \ge g(k)$ and

2 $f'(n) \ge g'(n)$ for every $n \ge k$.

Then for every $n \ge k$, it holds that $f(n) \ge g(n)$.

Example: $n \ge 3 \log n + 2$ holds for every $n \ge 16$

- $n \ge 3 \log n + 2$ holds for n = 16
- We have: (n)' = 1 and $(3 \log n + 2)' = \frac{3}{n \ln 2} < \frac{1}{2}$ for every $n \ge 16$. The result follows.

If \leq means grows asymptotically at least as fast as then we get:

 $5 \log n \le 4(n-1) \le n \log(n/2) \le 0.1 n^2 \le 0.01 \cdot 2^n$

Observe:

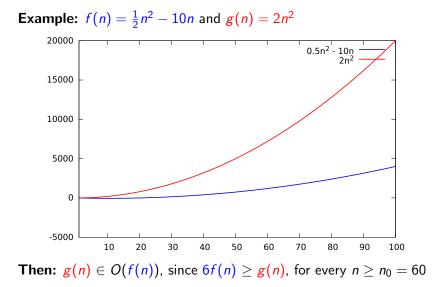
"polynomial of logarithms" \leq "polynomial" \leq "exponential"

Definition: *O*-notation ("Big O") Let $g : \mathbb{N} \to \mathbb{N}$ be a function. Then O(g(n)) is the set of functions:

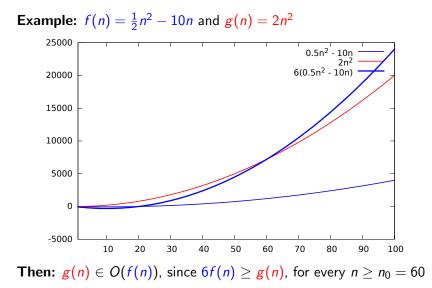
 $\begin{array}{lll} O(g(n)) &=& \{f(n) \ : \ \text{There exist positive constants c and n_0} \\ & & \text{such that } 0 \leq f(n) \leq cg(n) \text{ for all } n \geq n_0 \} \end{array}$

Meaning: $f(n) \in O(g(n))$: "g grows asymptotically at least as fast as f up to constants"

O-Notation: Example



O-Notation: Example



More Examples/Exercises

Recall:

 $O(g(n)) = \{f(n) : \text{ There exist positive constants } c \text{ and } n_0$ such that $0 \le f(n) \le cg(n) \text{ for all } n \ge n_0\}$

Exercises:

100n [?]∈ O(n) Yes, chose c = 100, n₀ = 1
0.5n [?]∈ O(n/log n) No: Suppose that such constants c and n₀ exist. Then, for every n ≥ n₀:

$$\begin{array}{rcl} 0.5n &\leq & cn/\log n \\ \log n &\leq & 2c \\ n &\leq & 2^{2c} \ , {\rm a \ contradiction}, \end{array}$$

since this does not hold for every $n > 2^{2c}$.

Properties

Recipe

- To prove f ∈ O(g): We need to find constants c, n₀ as in the statement of the definition
- To prove f ∉ O(g): We assume that constants c, n₀ exist and derive a contradiction

Constants $100 \stackrel{?}{\in} O(1)$ yes, every constant is in O(1)

Lemma (Sum of Two Functions)

Suppose that $f,g \in O(h)$. Then: $f + g \in O(h)$.

Proof. Let c, n_0 be such that $f(n) \le ch(n)$, for every $n \ge n_0$. Let c', n'_0 be such that $g(n) \le c'h(n)$, for every $n \ge n'_0$. Let C = c + c' and let $N_0 = \max\{n_0, n'_0\}$. Then:

$$f(n)+g(n)\leq ch(n)+c'h(n)=Ch(n)$$
 for every $n\geq N_0$. \square

Lemma (Polynomials)

Let $f(n) = c_0 + c_1 n + c_2 n^2 + c_3 n^3 + \cdots + c_k n^k$, for some integer k that is independent of n. Then: $f(n) \in O(n^k)$.

Proof: Apply statement on last slide O(1) times (k times)

Attention: Wrong proof of $n^2 \in O(n)$: (this is clearly wrong)

$$n^{2} = n + n + \underbrace{n + \dots n}_{n-2 \text{ times}} = O(n) + O(n) + \underbrace{n + \dots n}_{n-2 \text{ times}}$$
$$= O(n) + \underbrace{n + \dots n}_{n-2 \text{ times}} = O(n) + O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n)$$

Application of statement on last slide n times! (only allowed to apply statement O(1) times!)

Tool for the Analysis of Algorithms

- We will express the runtime of algorithms using O-notation
- This allows us to compare the runtimes of algorithms
- Important: Find the slowest growing function f such that our runtime is in O(f) (most algorithms have a runtime of O(2ⁿ))

Important Properties for the Analysis of Algorithms

• Composition of instructions:

$$f \in O(h_1), g \in O(h_2)$$
 then $f + g \in O(h_1 + h_2)$

• Loops: (repetition of instructions)

$$f \in O(h_1), g \in O(h_2)$$
 then $f \cdot g \in O(h_1 \cdot h_2)$

Rough incomplete Hierachy

- Constant time: O(1) (individual operations)
- Sub-logarithmic time: e.g., $O(\log \log n)$
- Logarithmic time: $O(\log n)$ (FAST-PEAK-FINDING)
- Poly-logarithmic time: e.g., $O(\log^2 n), O(\log^{10} n), \ldots$
- Linear time: O(n) (e.g., time to read the input)
- Quadratic time: $O(n^2)$ (potentially slow on big inputs)
- Polynomial time: $O(n^c)$ (used to be considered efficient)
- Exponential time: $O(2^n)$ (works only on very small inputs)
- Super-exponential time: e.g. $O(2^{2^n})$ (big trouble...)