
Lecture 2: O-notation (Why Constants Matter
Less)

COMS10007 - Algorithms

Dr. Christian Konrad

29.01.2019

Dr. Christian Konrad Lecture 2: O-notation (Why Constants Matter Less) 1 / 15

Runtime of Algorithms

Runtime of an Algorithm

Function that maps the input length n to the number of
simple/unit/elementary operations (worst case, best case,
average case, runtime on a specific input, . . .)

The number of array accesses in Peak Finding represents
the number of unit operations very well

Which runtime is better?

4(n − 1) (simple peak finding algorithm)

5 log n (fast peak finding algorithm)

0.1n2

n log(0.5n)

0.01 · 2n

Answer:
It depends... But there is a favourite

Dr. Christian Konrad Lecture 2: O-notation (Why Constants Matter Less) 2 / 15

Runtime Comparisons

-5

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 2 3 4 5 6 7 8 9 10

runtime

4(n-1)
5log(n)
0.1 n2

n log(n / 2)
0.01 2n

0.1n2 ≤ 0.01 · 2n ≤ 5 log n ≤ n log(n/2) ≤ 4(n − 1)
(n = 10)

Dr. Christian Konrad Lecture 2: O-notation (Why Constants Matter Less) 3 / 15

Runtime Comparisons

-50

 0

 50

 100

 150

 200

 250

 300

 350

 2 4 6 8 10 12 14

runtime

4(n-1)
5log(n)
0.1 n2

n log(n / 2)
0.01 2n

5 log n ≤ 0.1n2 ≤ n log(n/2) ≤ 4(n − 1) ≤ 0.01 · 2n
(n = 15)

Dr. Christian Konrad Lecture 2: O-notation (Why Constants Matter Less) 3 / 15

Runtime Comparisons

-20

 0

 20

 40

 60

 80

 100

 120

 5 10 15 20 25 30

runtime

4(n-1)
5log(n)
0.1 n2

n log(n / 2)

5 log n ≤ n log(n/2) ≤ 0.1n2 ≤ 4(n − 1)
(n = 30)

Dr. Christian Konrad Lecture 2: O-notation (Why Constants Matter Less) 3 / 15

Runtime Comparisons

-50

 0

 50

 100

 150

 200

 250

 5 10 15 20 25 30 35 40 45 50

runtime

4(n-1)
5log(n)
0.1 n2

n log(n / 2)

5 log n ≤ n log(n/2) ≤ 4(n − 1) ≤ 0.1n2

(n = 50)

Dr. Christian Konrad Lecture 2: O-notation (Why Constants Matter Less) 3 / 15

Runtime Comparisons

-500

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 20 40 60 80 100 120 140 160 180 200

runtime

4(n-1)
5log(n)
0.1 n2

n log(n / 2)

5 log n ≤ 4(n − 1) ≤ n log(n/2) ≤ 0.1n2

(n = 200)

Dr. Christian Konrad Lecture 2: O-notation (Why Constants Matter Less) 3 / 15

Order Functions Disregarding Constants

Aim: We would like to sort algorithms according to their runtime

Is algorithm A faster than algorithm B?

Asymptotic Complexity

For large enough n, constants seem to matter less

For small values of n, most algorithms are fast anyway (not
always true!)

Solution: Consider asymptotic behavior of functions

An increasing function f : N→ N grows asymptotically at least as
fast as an increasing function g : N→ N if there exists an n0 ∈ N
such that for every n ≥ n0 it holds:

f (n) ≥ g(n) .

Dr. Christian Konrad Lecture 2: O-notation (Why Constants Matter Less) 4 / 15

Example: f grows at least as fast as g

f(n)
g(n)
n0

Dr. Christian Konrad Lecture 2: O-notation (Why Constants Matter Less) 5 / 15

Example with Proof

Example: f (n) = 2n3, g(n) = 1
2 · 2

n

Then g(n) grows asymptotically at least as fast as f (n) since for
every n ≥ 16 we have g(n) ≥ f (n)

Proof: Find values of n for which the following holds:

1

2
· 2n ≥ 2n3

2n−1 ≥ 23 log n+1 (using n = 2log n)

n − 1 ≥ 3 log n + 1

n ≥ 3 log n + 2

This holds for every n ≥ 16 (which follows from the racetrack
principle). Thus, we chose any n0 ≥ 16.

Dr. Christian Konrad Lecture 2: O-notation (Why Constants Matter Less) 6 / 15

The Racetrack Principle

Racetrack Principle: Let f , g be functions, k an integer and
suppose that the following holds:

1 f (k) ≥ g(k) and

2 f ′(n) ≥ g ′(n) for every n ≥ k .

Then for every n ≥ k , it holds that f (n) ≥ g(n).

Example: n ≥ 3 log n + 2 holds for every n ≥ 16

n ≥ 3 log n + 2 holds for n = 16

We have: (n)′ = 1 and (3 log n + 2)′ = 3
n ln 2 < 1

2 for every
n ≥ 16. The result follows.

Dr. Christian Konrad Lecture 2: O-notation (Why Constants Matter Less) 7 / 15

Order Functions by Asymptotic Growth

If ≤ means grows asymptotically at least as fast as then we get:

5 log n ≤ 4(n − 1) ≤ n log(n/2) ≤ 0.1n2 ≤ 0.01 · 2n

Observe:

“polynomial of logarithms” ≤ “polynomial” ≤ “exponential”

Dr. Christian Konrad Lecture 2: O-notation (Why Constants Matter Less) 8 / 15

Big O Notation

Definition: O-notation (“Big O”)

Let g : N → N be a function. Then O(g(n)) is the set of
functions:

O(g(n)) = {f (n) : There exist positive constants c and n0

such that 0 ≤ f (n) ≤ cg(n) for all n ≥ n0}

Meaning: f (n) ∈ O(g(n)) : “g grows asymptotically at least as
fast as f up to constants”

Dr. Christian Konrad Lecture 2: O-notation (Why Constants Matter Less) 9 / 15

O-Notation: Example

Example: f (n) = 1
2n

2 − 10n and g(n) = 2n2

-5000

 0

 5000

 10000

 15000

 20000

 10 20 30 40 50 60 70 80 90 100

0.5n2 - 10n
2n2

Then: g(n) ∈ O(f (n)), since 6f (n) ≥ g(n), for every n ≥ n0 = 60

Dr. Christian Konrad Lecture 2: O-notation (Why Constants Matter Less) 10 / 15

O-Notation: Example

Example: f (n) = 1
2n

2 − 10n and g(n) = 2n2

-5000

 0

 5000

 10000

 15000

 20000

 25000

 10 20 30 40 50 60 70 80 90 100

0.5n2 - 10n
2n2

6(0.5n2 - 10n)

Then: g(n) ∈ O(f (n)), since 6f (n) ≥ g(n), for every n ≥ n0 = 60

Dr. Christian Konrad Lecture 2: O-notation (Why Constants Matter Less) 10 / 15

More Examples/Exercises

Recall:

O(g(n)) = {f (n) : There exist positive constants c and n0

such that 0 ≤ f (n) ≤ cg(n) for all n ≥ n0}

Exercises:

100n
?
∈ O(n) Yes, chose c = 100, n0 = 1

0.5n
?
∈ O(n/ log n) No: Suppose that such constants c and n0

exist. Then, for every n ≥ n0 :

0.5n ≤ cn/ log n

log n ≤ 2c

n ≤ 22c , a contradiction,

since this does not hold for every n > 22c .

Dr. Christian Konrad Lecture 2: O-notation (Why Constants Matter Less) 11 / 15

Properties

Recipe

To prove f ∈ O(g): We need to find constants c , n0 as in the
statement of the definition

To prove f /∈ O(g): We assume that constants c , n0 exist and
derive a contradiction

Constants 100
?
∈ O(1) yes, every constant is in O(1)

Lemma (Sum of Two Functions)

Suppose that f , g ∈ O(h). Then: f + g ∈ O(h) .

Proof. Let c , n0 be such that f (n) ≤ ch(n), for every n ≥ n0. Let
c ′, n′0 be such that g(n) ≤ c ′h(n), for every n ≥ n′0.

Let C = c + c ′ and let N0 = max{n0, n′0}. Then:

f (n) + g(n) ≤ ch(n) + c ′h(n) = Ch(n) for every n ≥ N0 .

Dr. Christian Konrad Lecture 2: O-notation (Why Constants Matter Less) 12 / 15

Further Properties

Lemma (Polynomials)

Let f (n) = c0 + c1n + c2n
2 + c3n

3 + · · ·+ ckn
k , for some integer k

that is independent of n. Then: f (n) ∈ O(nk) .

Proof: Apply statement on last slide O(1) times (k times)

Attention: Wrong proof of n2 ∈ O(n): (this is clearly wrong)

n2 = n + n + n + . . . n︸ ︷︷ ︸
n−2 times

= O(n) + O(n) + n + . . . n︸ ︷︷ ︸
n−2 times

= O(n) + n + . . . n︸ ︷︷ ︸
n−2 times

= O(n) + O(n) + n + . . . n︸ ︷︷ ︸
n−3 times

=

= O(n) + n + . . . n︸ ︷︷ ︸
n−3 times

= · · · = O(n) .

Application of statement on last slide n times! (only allowed to
apply statement O(1) times!)

Dr. Christian Konrad Lecture 2: O-notation (Why Constants Matter Less) 13 / 15

Runtime of Algorithms

Tool for the Analysis of Algorithms

We will express the runtime of algorithms using O-notation

This allows us to compare the runtimes of algorithms

Important: Find the slowest growing function f such that our
runtime is in O(f) (most algorithms have a runtime of O(2n))

Important Properties for the Analysis of Algorithms

Composition of instructions:

f ∈ O(h1), g ∈ O(h2) then f + g ∈ O(h1 + h2)

Loops: (repetition of instructions)

f ∈ O(h1), g ∈ O(h2) then f · g ∈ O(h1 · h2)

Dr. Christian Konrad Lecture 2: O-notation (Why Constants Matter Less) 14 / 15

Hierachy

Rough incomplete Hierachy

Constant time: O(1) (individual operations)

Sub-logarithmic time: e.g., O(log log n)

Logarithmic time: O(log n) (Fast-Peak-Finding)

Poly-logarithmic time: e.g., O(log2 n),O(log10 n), . . .

Linear time: O(n) (e.g., time to read the input)

Quadratic time: O(n2) (potentially slow on big inputs)

Polynomial time: O(nc) (used to be considered efficient)

Exponential time: O(2n) (works only on very small inputs)

Super-exponential time: e.g. O(22
n
) (big trouble...)

Dr. Christian Konrad Lecture 2: O-notation (Why Constants Matter Less) 15 / 15

