
In-class Test

COMS10007 Algorithms 2018/2019

12.03.2019

Reminder: log n denotes the binary logarithm, i.e., log n = log2 n. We also write logc n as an
abbreviation for (log n)c.

Make sure to put your name on every piece of paper that you hand in!

1 O-notation

1. Let f : N→ N be a function. Define the set Ω(f(n)).

2. Give a formal proof of the statement:

10 log n ∈ O(log2 n) .

3. For each of the following statements, indicate whether it is true of false: (no justification
needed)

(a) n ∈ O(n2)

(b) log n ∈ O(n3)

(c) log n ∈ O(
√

log n)

(d) n! ∈ O(2n)

(e) 2
√
logn = O(log2 n)

(f) f(n) ∈ O(g(n)) implies g(n) ∈ Ω(f(n))

(g) f(n) /∈ O(g(n)) implies g(n) ∈ O(f(n))

2 Sorting Algorithms

Let A be an array of length n with A[i] = A[j], for every 0 ≤ i, j ≤ n− 1.

1. What is the runtime of Heapsort on A? (in Θ-notation, no justification needed)

2. What is the runtime of Mergesort on A? (in Θ-notation, no justification needed)

3. What is the runtime of Insertionsort on A? (in Θ-notation, no justification needed)

4. What are the best-case and worst-case runtimes of Mergesort? (no justification needed)

5. Illustrate how the Mergesort algorithm sorts the following array (for example using a
recursion tree):

9 3 2 7 1 6 11 4

Continued on next page...

1

3 Loop-Invariant

Consider the following algorithm: (it takes two parameters, an array A of length n of positive
integers, and an integer x)

Algorithm 1

Require: A is an array of n positive integers, x is an integer
1: c← 0
2: for i← 0, 1, . . . , n− 1 do
3: if A[i] < x then
4: c← c + 1
5: end if
6: end for
7: return c

1. Consider the for-loop of the algorithm. One of the following options is a correct loop-
invariant:

At the beginning of iteration i (i.e., after i is updated in Line 2 and before the code in
Lines 3, 4, and 5 is executed) ...

(a) ... c = |{j : 0 ≤ j < i and A[j] < x}|
(b) ... c = |{j : 0 ≤ j ≤ i and A[j] < x}|
(c) ... c = |{j : 0 ≤ j < i and A[j] ≤ x}|
(d) ... c = |{j : 0 ≤ j ≤ i and A[j] ≤ x}|

State which one is correct.

2. Initialization: Consider the correct invariant. Argue that at the beginning of the first
iteration, i.e. when i = 0, the loop-invariant holds.

3. Maintenance: Consider the correct invariant. Suppose that the loop invariant holds at the
beginning of iteration i. Argue that the loop-invariant then also holds at the beginning
of iteration i + 1.

4. Termination: What does the algorithm compute? Argue that this follows from the correct
loop invariant.

2

