Lectures 13/14: Solving Recurrences COMS10007 - Algorithms

Dr. Christian Konrad

18.03.2019 and 19.03.2019

Divide-and-conquer Algorithms

Algorithmic Design Principle: Divide-and-conquer

(1) Divide the problem into a number of subproblems that are smaller instances of the same problem
(2) Conquer the subproblems by solving them recursively (if subproblems have constant size, solve them directly)
(3) Combine the solutions to the subproblems into the solution for the original problem

Examples

Quicksort, mergesort, maximum subarray algorithm, binary search, Fast-Peak-Finding, ...

Example: Merge sort

Recall: Merge Sort

Example: Merge sort

Recall: Merge Sort

(1) Divide

Split input array A of length n into subarrays $A_{1}=A[0,\lfloor n / 2\rfloor]$ and $A_{2}=A[\lfloor n / 2\rfloor+1, n-1]$

Example: Merge sort

Recall: Merge Sort

(1) Divide $A \rightarrow A_{1}$ and A_{2}
(2) Conquer

Sort A_{1} and A_{2} recursively using the same algorithm

Example: Merge sort

Recall: Merge Sort

(1) Divide $A \rightarrow A_{1}$ and A_{2}
(2) Conquer Solve A_{1} and A_{2}
(3) Combine

Combine sorted subarrays A_{1} and A_{2} and obtain sorted array A

Runtime: (assuming that n is a power of 2)

$$
\begin{aligned}
& T(1)=O(1) \\
& T(n)=2 T(n / 2)+O(n)
\end{aligned}
$$

How to solve Recurrences?

Recurrences

- Divide-and-Conquer algorithms naturally lead to recurrences
- How can we solve them? Often only interested in asymptotic upper bounds

Methods for solving recurrences

- Substitution method guess solution, verify, induction
- Recursion-tree method (previously seen for merge sort and maximum subarray problem)
may have plenty of awkward details, provides good guess that can be verified with substitution method
- Master theorem
very powerful, cannot always be applied

The Substitution Method

The Substitution Method
(1) Guess the form of the solution
(2) Use mathematical induction to find the constants and show that the solution works
(3) Method provides an upper bound on the recurrence

Example (suppose n is always a power of two)

$$
\begin{aligned}
& T(1)=O(1) \\
& T(n)=2 T(n / 2)+O(n)
\end{aligned}
$$

The Substitution Method

The Substitution Method
(1) Guess the form of the solution
(2) Use mathematical induction to find the constants and show that the solution works
(3) Method provides an upper bound on the recurrence

Example (suppose n is always a power of two)

$$
\begin{aligned}
& T(1)=c_{1} \\
& T(n)=2 T(n / 2)+c_{2} n
\end{aligned}
$$

Eliminate O-notation in recurrence

The Substitution Method

The Substitution Method
(1) Guess the form of the solution
(2) Use mathematical induction to find the constants and show that the solution works
(3) Method provides an upper bound on the recurrence

Example (suppose n is always a power of two)

$$
\begin{aligned}
& T(1)=c_{1} \\
& T(n)=2 T(n / 2)+c_{2} n
\end{aligned}
$$

Eliminate O-notation in recurrence
Step 1. Guess good upper bound

$$
T(n) \leq C n \log n
$$

The Substitution Method (2)

Step 2. Substitute into the Recurrence

- Assume that our guess $T(n) \leq C n \log n$ is correct for every $n^{\prime}<n$
- Corresponds to induction step of a proof by induction

$$
\begin{aligned}
T(n) & =2 T(n / 2)+c_{2} n \leq 2 C \frac{n}{2} \log \left(\frac{n}{2}\right)+c_{2} n \\
& =C n(\log (n)-\log (2))+c_{2} n \\
& =C n \log n-C n+c_{2} n \leq C n \log n
\end{aligned}
$$

if we chose $C \geq c_{2} . \checkmark$
Verify the Base Case

$$
T(1) \leq C \cdot 1 \log (1)=0 \nsupseteq c_{1} \quad x
$$

The base case is a problem...

The Substitution Method (3)

Recall: $T(1)=c_{1}$ and $T(n)=2 T(n / 2)+c_{2} n$
Our guess: $T(n) \leq C n \log n$ (induction step holds for $C \geq c_{2}$)
Solution: Choose a different base case! $n=2$

$$
\begin{aligned}
T(2) & =2 T(1)+2 c_{2}=2 c_{1}+2 c_{2}=2\left(c_{2}+c_{1}\right) \\
C 2 \log 2 & =2 C
\end{aligned}
$$

Hence, for every $C \geq c_{2}+c_{1}$, our guess holds for $n=2$:

$$
T(2) \leq C 2 \log 2
$$

Result

- We proved $T(n) \leq C n \log n$, for every $n \geq 2$, when choosing $C \geq c_{1}+c_{2}$
- Observe: This implies $T(n) \in O(n \log n)$ (important)

Asymptotic notation allows us to chose arbitrary base-case

A Strange Problem

Example: Give an upper bound on the recurrence

$$
\begin{aligned}
& T(1)=1 \\
& T(n)=T(\lceil n / 2\rceil)+T(\lfloor n / 2\rfloor)+1
\end{aligned}
$$

Step 1: Guess correct solution $T(n) \leq f(n):=C n$
Step 2: Verify the solution

$$
T(n) \leq C\lceil n / 2\rceil+C\lfloor n / 2\rfloor+1=C n+1 \not \leq f(n) X
$$

- We need a different guess
- Let's try: $f_{1}(n):=C n+1$ and $f_{2}(n):=C n-1$

$$
\begin{aligned}
& f_{1}: T(n) \leq C\lceil n / 2\rceil+1+C\lfloor n / 2\rfloor+1+1=C n+3 \not \leq f_{1}(n) \boldsymbol{X} \\
& f_{2}: T(n) \leq C\lceil n / 2\rceil-1+C\lfloor n / 2\rfloor-1+1=C n-1=f_{2}(n) \checkmark
\end{aligned}
$$

(holds for every positive C)

A Strange Problem (2)

Verify Base Case for f_{2}

- We have: $T(1)=1$ and $f_{2}(1)=C-1 \geq T(1)$ for $C \geq 2$
- We thus set the constant C in f_{2} to $C=2$
- Then $f_{2}(n)=2 n-1 \geq T(n)$ for every $n \geq 1$
- This implies that $T(n) \in O(n)$

Comments

- Guessing right can be difficult and requires experience
- However, recursion tree method can provide a good guess!

Recursion Tree Method

Recursion Tree:

- Each node represents cost of single subproblem
- Recursive invocations become children of a node

Example

$$
T(1)=1, \quad T(n)=2 T(\lfloor n / 4\rfloor)+n / 2
$$

$$
\begin{aligned}
T(64) & =2 T(16)+32=2(2 T(4)+8)+32 \\
& =2(2(2 T(1)+2)+8)+32 \\
& =2(2(2 \cdot 1+2)+8)+32=64
\end{aligned}
$$

Example

$$
T(1)=1, \quad T(n)=2 T(\lfloor n / 4\rfloor)+\underbrace{n / 2}_{\text {cost of subproblem }}
$$

Recursion Tree for $n=64$:

Sum of values assigned to nodes equals T (64)

Obtaining a Good Guess for Solution

$$
T(1)=1, \quad T(n)=2 T(\lfloor n / 4\rfloor)+n / 2
$$

Draw Recursion Tree for general n (Observe: we ignore \lfloor.$\rfloor)$

Sum of Nodes in Level i : $\frac{n}{2^{\prime}}$ (except the last level)

Obtaining a Good Guess for Solution (2)

Number of Levels: I

- We have $\frac{n}{4^{l-1}} \approx 1$
- $I=\log _{4}(n)+1$

Cost on last Level: = number of nodes on last level

$$
\approx 2^{\log _{4}(n)}=2^{\frac{\log n}{\log 4}}=2^{\log (n) / 2}=n^{\frac{1}{2}}=\sqrt{n} .
$$

Our Guess:

$\left(\sum_{i=1}^{\log _{4}(n)} \frac{n}{2^{i}}\right)+\sqrt{n}=(n \cdot \underbrace{\sum_{i=1}^{\log _{4}(n)} \frac{1}{2^{i}}}_{\text {geom. series }})+\sqrt{n}=n \cdot O(1)+\sqrt{n}=O(n)$.
Use substitution method to prove that guess is correct!

Verification via Substitution Method

$$
T(1)=1, \quad T(n)=2 T(\lfloor n / 4\rfloor)+n / 2
$$

Our Guess: $T(n) \leq c \cdot n$
Substitute into the Recurrence:

$$
T(n)=2 T(\lfloor n / 4\rfloor)+n / 2 \leq 2 c\left\lfloor\frac{n}{4}\right\rfloor+\frac{n}{2} \leq n \frac{c+1}{2} \leq c \cdot n,
$$

for every $c \geq 1$.
Verify the Base Case: $T(1)=1 \leq c \cdot 1=c$ for every $c \geq 1$.
Summary:

- We proved $T(n) \leq n$, for every $n \geq 1$
- Hence $T(n) \in O(n)$

Summary

Recursion Tree Method

- Assign contribution of subproblem to each node
- Sum up contributions using tree structure
- Allows us to be sloppy, since we only aim for a good guess
- Verify guess with subsitution method

Substitution Method

- Guess correct solution
- Verify guess using mathematical induction
- Guessing can be difficult

