Lectures 13/14: Solving Recurrences

COMS10007 - Algorithms

Dr. Christian Konrad

18.03.2019 and 19.03.2019

Dr. Christian Konrad Lectures 13/14: Solving Recurrences

Divide-and-conquer Algorithms

Algorithmic Design Principle: Divide-and-conquer
@ Divide the problem into a number of subproblems that are
smaller instances of the same problem

@ Conquer the subproblems by solving them recursively (if
subproblems have constant size, solve them directly)

© Combine the solutions to the subproblems into the solution
for the original problem

Examples
Quicksort, mergesort, maximum subarray algorithm, binary search,

FAST-PEAK-FINDING, ...

Dr. Christian Konrad Lectures 13/14: Solving Recurrences 2/ 15

Example: Merge sort

Recall: Merge Sort

Dr. Christian Konrad Lectures 13/14: Solving Recurrences 3/ 15

Example: Merge sort

Recall: Merge Sort
O Divide

Split input array A of length n into subarrays A; = A[0, | n/2]]
and Ay = A[[n/2] +1,n—1]

|12

9|7|2|3|8|15|7|

BN EIEIEIE

Dr. Christian Konrad Lectures 13/14: Solving Recurrences

Example: Merge sort

Recall: Merge Sort

© Divide A — A; and A

@ Conquer
Sort A; and A; recursively using the same algorithm

|12 9|7|2|3|8|15|7|

2] 7)o]

Dr. Christian Konrad Lectures 13/14: Solving Recurrences

Example: Merge sort

Recall: Merge Sort

@ Divide A — A; and A,
@ Conquer Solve A; and As

© Combine
Combine sorted subarrays A; and A, and obtain sorted array A

2[5 [7 =] [2]]

2] 7)o]x] EIRAENED

Runtime: (assuming that n is a power of 2)

T(1) = 0Q1)
T(n) = 2T(n/2)+ O(n)

Dr. Christian Konrad Lectures 13/14: Solving Recurrences

How to solve Recurrences?

Recurrences

@ Divide-and-Conquer algorithms naturally lead to recurrences

@ How can we solve them? Often only interested in asymptotic
upper bounds

Methods for solving recurrences

@ Substitution method
guess solution, verify, induction

@ Recursion-tree method (previously seen for merge sort and
maximum subarray problem)
may have plenty of awkward details, provides good guess that
can be verified with substitution method

o Master theorem
very powerful, cannot always be applied

Dr. Christian Konrad Lectures 13/14: Solving Recurrences

The Substitution Method

The Substitution Method

@ Guess the form of the solution

@ Use mathematical induction to find the constants and show
that the solution works

© Method provides an upper bound on the recurrence

Example (suppose n is always a power of two)

T(1) = 0(1)
T(n) = 2T(n/2)+ O(n)

Dr. Christian Konrad Lectures 13/14: Solving Recurrences

The Substitution Method

The Substitution Method
@ Guess the form of the solution

@ Use mathematical induction to find the constants and show
that the solution works

© Method provides an upper bound on the recurrence

Example (suppose n is always a power of two)

T(l) =
T(n) = 2T(n/2)+ cn

Eliminate O-notation in recurrence

Dr. Christian Konrad Lectures 13/14: Solving Recurrences

The Substitution Method

The Substitution Method

@ Guess the form of the solution

@ Use mathematical induction to find the constants and show
that the solution works

© Method provides an upper bound on the recurrence

Example (suppose n is always a power of two)

T(l) =
T(n) = 2T(n/2)+ cn

Eliminate O-notation in recurrence

Step 1. Guess good upper bound

T(n) < Cnlogn

Dr. Christian Konrad Lectures 13/14: Solving Recurrences

The Substitution Method (2)

Step 2. Substitute into the Recurrence
@ Assume that our guess T(n) < Cnlog n is correct for every
n <n
@ Corresponds to induction step of a proof by induction

n n
T(n) = 2T(n/2)+ cn < 2C§ Iog(a

= Cn(log(n) —log(2)) 4+ can
= Cnlogn—Cn+ cn < Cnlogn,

)+C2n

if we chose C > . vV

Verify the Base Case
T(1)<C-llog(l)=0%a X

The base case is a problem...

Dr. Christian Konrad Lectures 13/14: Solving Recurrences

The Substitution Method (3)

Recall: T(1)=c¢; and T(n)=2T(n/2)+ con
Our guess: T(n) < Cnlog n (induction step holds for C > ¢)

Solution: Choose a different base case! n =2
T(2) = 2T(1)4+2c=2c+2c0=2(cx+c1)
C2log2 = 2C
Hence, for every C > ¢ + ¢1, our guess holds for n = 2:
T(2) < C2log2.

Result

e We proved T(n) < Cnlogn, for every n > 2, when choosing
C>Za+oe
@ Observe: This implies T(n) € O(nlog n) (important)

Asymptotic notation allows us to chose arbitrary base-case

Dr. Christian Konrad Lectures 13/14: Solving Recurrences

A Strange Problem

Example: Give an upper bound on the recurrence
T(1) =1
T(n) = T([n/2])+ T(ln/2]) +1
Step 1: Guess correct solution T(n) < f(n):= Cn

Step 2: Verify the solution
T(n) < C[n/2]+C|n/2|+1=Cn+ 1% f(n) X

@ We need a different guess

o Let'stry: fi(n):=Cn+1and fp(n):=Cn—1
fi: T(n) < C[n/2]+1+Cln/2|+14+1=Cn+3<£ fi(n) X
fr: T(n) < C[n/2]—=1+C|n/2] —1+1=Cn—1=f(n) v
(holds for every positive C)

Dr. Christian Konrad Lectures 13/14: Solving Recurrences

A Strange Problem (2)

Verify Base Case for f;
@ We have: T(1)=1and (1) =C—-12> T(1) for C >2
@ We thus set the constant C in f, to C =2
@ Then f(n) =2n—1> T(n) for every n > 1
e This implies that T(n) € O(n)

Comments
@ Guessing right can be difficult and requires experience

@ However, recursion tree method can provide a good guess!

Dr. Christian Konrad Lectures 13/14: Solving Recurrences

Recursion Tree Method

Recursion Tree:
@ Each node represents cost of single subproblem

@ Recursive invocations become children of a node

Example
T(1)=1, T(n)=2T(|n/4])+n/2

T(64) = 2T(16)+32=2(2T(4)+8)+ 32
= 2(2(2T(1) +2) +8) + 32
= 2(2(2-1+2)+8)+32 =64

Dr. Christian Konrad Lectures 13/14: Solving Recurrences

T(1)=1, T(n)=2T(|n/4])+ n/2
~—

cost of subproblem

Sum of values assigned to nodes equals T(64)

Dr. Christian Konrad Lectures 13/14: Solving Recurrences 11/ 15

Obtaining a Good Guess for Solution

T(1)=1, T(n)=2T(|n/4])+n/2

Draw Recursion Tree for general n (Observe: we ignore |.])

@ n/2
@ @
® ®© © & -

00000000

n
Sum of Nodes in Level i: o (except the last level)

Dr. Christian Konrad Lectures 13/14: Solving Recurrences

Obtaining a Good Guess for Solution (2)

Number of Levels- /
@ We have = 1%1
o | =log,(n) +1

Cost on last Level: = number of nodes on last level

~ 2lo8a(n) _ piced — QIo8(n/2 — p} — \/p

Our Guess:
log,(n) n log,(n) 1
;Z; > +Vn=|n- 2 > +vn=n-0(1)+vn= 0(n).

geom. series

Use substitution method to prove that guess is correct!

Dr. Christian Konrad Lectures 13/14: Solving Recurrences 13/ 15

Verification via Substitution Method

T(1)=1, T(n)=2T(|n/4])+ n/2
Our Guess: T(n)<c-n

Substitute into the Recurrence:

T(n) = 2T(ln/4])+n/2 < 2c{£J 47

N |
|

N
|

for every ¢ > 1.
Verify the Base Case: T(1)=1<c¢-1=c forevery c > 1.

Summary:
e We proved T(n) < n, for every n>1
@ Hence T(n) € O(n)

Dr. Christian Konrad Lectures 13/14: Solving Recurrences 14/ 15

Recursion Tree Method
@ Assign contribution of subproblem to each node
@ Sum up contributions using tree structure
@ Allows us to be sloppy, since we only aim for a good guess

@ Verify guess with subsitution method

Substitution Method
@ Guess correct solution
@ Verify guess using mathematical induction

@ Guessing can be difficult

Dr. Christian Konrad Lectures 13/14: Solving Recurrences

