Lectures 13/14: Solving Recurrences COMS10007 - Algorithms

Dr. Christian Konrad

18.03.2019 and 19.03.2019

Divide-and-conquer Algorithms

Algorithmic Design Principle: Divide-and-conquer

- **Divide** the problem into a number of subproblems that are smaller instances of the same problem
- Conquer the subproblems by solving them recursively (if subproblems have constant size, solve them directly)
- Combine the solutions to the subproblems into the solution for the original problem

Examples

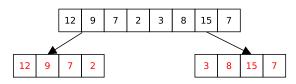
Quicksort, mergesort, maximum subarray algorithm, binary search, FAST-PEAK-FINDING, . . .

Recall: Merge Sort

Recall: Merge Sort

Divide

Split input array A of length n into subarrays $A_1 = A[0, \lfloor n/2 \rfloor]$ and $A_2 = A[\lfloor n/2 \rfloor + 1, n-1]$



Recall: Merge Sort

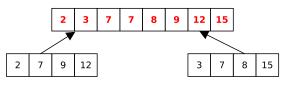
- **① Divide** $A \rightarrow A_1$ and A_2
- Conquer

Sort A_1 and A_2 recursively using the same algorithm

Recall: Merge Sort

- **① Divide** $A \rightarrow A_1$ and A_2
- **2** Conquer Solve A_1 and A_2
- Combine

Combine sorted subarrays A_1 and A_2 and obtain sorted array A



Runtime: (assuming that n is a power of 2)

$$T(1) = O(1)$$

 $T(n) = 2T(n/2) + O(n)$

How to solve Recurrences?

Recurrences

- Divide-and-Conquer algorithms naturally lead to recurrences
- How can we solve them? Often only interested in asymptotic upper bounds

Methods for solving recurrences

- Substitution method guess solution, verify, induction
- Recursion-tree method (previously seen for merge sort and maximum subarray problem)
 may have plenty of awkward details, provides good guess that can be verified with substitution method
- Master theorem very powerful, cannot always be applied

The Substitution Method

The Substitution Method

- Guess the form of the solution
- Use mathematical induction to find the constants and show that the solution works
- Method provides an upper bound on the recurrence

Example (suppose n is always a power of two)

$$T(1) = O(1)$$

 $T(n) = 2T(n/2) + O(n)$

The Substitution Method

The Substitution Method

- Guess the form of the solution
- Use mathematical induction to find the constants and show that the solution works
- Method provides an upper bound on the recurrence

Example (suppose n is always a power of two)

$$T(1) = c_1$$

 $T(n) = 2T(n/2) + c_2n$

Eliminate O-notation in recurrence

The Substitution Method

The Substitution Method

- Guess the form of the solution
- Use mathematical induction to find the constants and show that the solution works
- Method provides an upper bound on the recurrence

Example (suppose n is always a power of two)

$$T(1) = c_1$$

 $T(n) = 2T(n/2) + c_2 n$

Eliminate O-notation in recurrence

Step 1. Guess good upper bound

$$T(n) \leq Cn \log n$$

The Substitution Method (2)

Step 2. Substitute into the Recurrence

- Assume that our guess $T(n) \le Cn \log n$ is correct for every n' < n
- Corresponds to induction step of a proof by induction

$$T(n) = 2T(n/2) + c_2n \le 2C\frac{n}{2}\log(\frac{n}{2}) + c_2n$$

= $Cn(\log(n) - \log(2)) + c_2n$
= $Cn\log n - Cn + c_2n \le Cn\log n$,

if we chose $C \geq c_2$. \checkmark

Verify the Base Case

$$T(1) \leq C \cdot 1 \log(1) = 0 \ngeq c_1$$
 X

The base case is a problem...

The Substitution Method (3)

Recall: $T(1) = c_1$ and $T(n) = 2T(n/2) + c_2n$ Our guess: $T(n) \le Cn \log n$ (induction step holds for $C \ge c_2$)

Solution: Choose a different base case! n = 2

$$T(2) = 2T(1) + 2c_2 = 2c_1 + 2c_2 = 2(c_2 + c_1)$$

 $C2 \log 2 = 2C$

Hence, for every $C \ge c_2 + c_1$, our guess holds for n = 2:

$$T(2) \le C2 \log 2.$$

Result

- We proved $T(n) \le Cn \log n$, for every $n \ge 2$, when choosing $C \ge c_1 + c_2$
- **Observe:** This implies $T(n) \in O(n \log n)$ (important)

Asymptotic notation allows us to chose arbitrary base-case

A Strange Problem

Example: Give an upper bound on the recurrence

$$T(1) = 1$$

 $T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + 1$

Step 1: Guess correct solution $T(n) \le f(n) := Cn$

Step 2: Verify the solution

$$T(n) \leq C\lceil n/2 \rceil + C\lfloor n/2 \rfloor + 1 = Cn + 1 \nleq f(n)$$

- We need a different guess
- Let's try: $f_1(n) := Cn + 1$ and $f_2(n) := Cn 1$

$$f_1: T(n) \le C\lceil n/2 \rceil + 1 + C\lceil n/2 \rceil + 1 + 1 = Cn + 3 \nleq f_1(n) \times f_1: T(n) \le C\lceil n/2 \rceil + 1 + C\lceil n/2 \rceil + 1 + 1 = Cn + 1 = f(n) \times f_1(n) = f(n) = f(n)$$

 $f_2: T(n) \leq C \lceil n/2 \rceil - 1 + C \lfloor n/2 \rfloor - 1 + 1 = Cn - 1 = f_2(n) \checkmark$

(holds for every positive C)

A Strange Problem (2)

Verify Base Case for f2

- We have: T(1) = 1 and $f_2(1) = C 1 \ge T(1)$ for $C \ge 2$
- We thus set the constant C in f_2 to C=2
- Then $f_2(n) = 2n 1 \ge T(n)$ for every $n \ge 1$
- This implies that $T(n) \in O(n)$

Comments

- Guessing right can be difficult and requires experience
- However, recursion tree method can provide a good guess!

Recursion Tree Method

Recursion Tree:

- Each node represents cost of single subproblem
- Recursive invocations become children of a node

Example

$$T(1) = 1$$
, $T(n) = 2T(\lfloor n/4 \rfloor) + n/2$

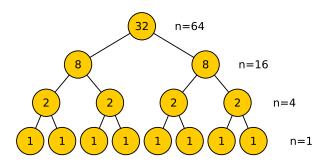
$$T(64) = 2T(16) + 32 = 2(2T(4) + 8) + 32$$

= $2(2(2T(1) + 2) + 8) + 32$
= $2(2(2 \cdot 1 + 2) + 8) + 32 = 64$

Example

$$T(1) = 1$$
, $T(n) = 2T(\lfloor n/4 \rfloor) + \underbrace{n/2}_{\text{cost of subproblem}}$

Recursion Tree for n = 64:

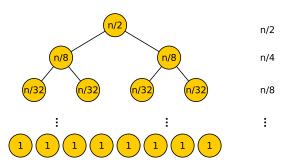


Sum of values assigned to nodes equals T(64)

Obtaining a Good Guess for Solution

$$T(1) = 1$$
, $T(n) = 2T(\lfloor n/4 \rfloor) + n/2$

Draw Recursion Tree for general n (Observe: we ignore |.|)



Sum of Nodes in Level i: $\frac{n}{2^l}$ (except the last level)

Obtaining a Good Guess for Solution (2)

Number of Levels: /

- We have $\frac{n}{4^{l-1}} \approx 1$
- $l = \log_4(n) + 1$

Cost on last Level: = number of nodes on last level

$$pprox 2^{\log_4(n)} = 2^{\frac{\log n}{\log 4}} = 2^{\log(n)/2} = n^{\frac{1}{2}} = \sqrt{n}$$
.

Our Guess:

$$\left(\sum_{i=1}^{\log_4(n)} \frac{n}{2^i}\right) + \sqrt{n} = \left(n \cdot \sum_{i=1}^{\log_4(n)} \frac{1}{2^i}\right) + \sqrt{n} = n \cdot O(1) + \sqrt{n} = O(n).$$

Use substitution method to prove that guess is correct!

Verification via Substitution Method

$$T(1) = 1$$
, $T(n) = 2T(\lfloor n/4 \rfloor) + n/2$

Our Guess: $T(n) \le c \cdot n$

Substitute into the Recurrence:

$$T(n) = 2T(\lfloor n/4 \rfloor) + n/2 \le 2c\lfloor \frac{n}{4} \rfloor + \frac{n}{2} \le n\frac{c+1}{2} \le c \cdot n$$

for every $c \ge 1$.

Verify the Base Case: $T(1) = 1 \le c \cdot 1 = c$ for every $c \ge 1$.

Summary:

- We proved $T(n) \le n$, for every $n \ge 1$
- Hence $T(n) \in O(n)$

Summary

Recursion Tree Method

- Assign contribution of subproblem to each node
- Sum up contributions using tree structure
- Allows us to be sloppy, since we only aim for a good guess
- Verify guess with substitution method

Substitution Method

- Guess correct solution
- Verify guess using mathematical induction
- Guessing can be difficult