Lecture 12: Lower Bound for Sorting, Countingsort, Radixsort COMS10007 - Algorithms

Dr. Christian Konrad

12.03.2019

Can we sort faster than $O(n \log n)$ time?

Recall: Fastest runtime of any sorting algorithm seen is $O(n \log n)$

Can we sort faster?

- For example in $O(n \log \log n)$ time?
- Or even $O(n)$ time?

Yes! we can sometimes sort faster But in general, no, we cannot

Example: Sort an array of length n of bits, i.e., every array element is either 0 or 1 , in time $O(n)$?

- Count number of $0 \mathrm{~s} n_{0}$
- Write $n_{0} 0 \mathrm{~s}$ followed by $n-n_{0} 1 \mathrm{~s}$
- Both operations take time $O(n)$

Comparison-based Sorting

Comparison-based Sorting

- Order is determined solely by comparing input elements
- All information we obtain is by asking "Is $A[i] \leq A[j]$?", for some i, j, in particular, we may not inspect the elements
- Quicksort, mergesort, insertionsort, heapsort are comparison-based sorting algorithms
- Algorithm on last slide can be turned into a comparison-based algorithm. How? (restricted domain)

Lower Bound for Comparison-based Sorting

- We will prove that every comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons
- This implies that $O(n \log n)$ is an optimal runtime for comparison-based sorting

Lower Bound for Comparison-based Sorting

Problem

- A : array of length n, all elements are different
- We are only allowed to ask: Is $A[i]<A[j]$, for any $i, j \in[n]$
- How many questions are needed until we can determine the order of all elements?

Permutations

- A bijective function $\pi:[n] \rightarrow[n]$ is called a permutation

$$
\begin{aligned}
& \pi(1)=3 \\
& \pi(2)=2 \\
& \pi(3)=4 \\
& \pi(4)=1
\end{aligned}
$$

- A reordering of $[n]$

Lower Bound for Comparison-based Sorting (2)

How many permutations are there?
Let Π be the set of all permutations on n elements

Lemma
$|\Pi|=n!=n \cdot(n-1) \ldots 3 \cdot 2 \cdot 1$
Proof. The first element can be mapped to n potential elements.
The second can only be mapped to $(n-1)$ elements. etc.
Rephrasing our Task: Find permutation $\pi \in \Pi$ such that:

$$
A[\pi(1)]<A[\pi(2)]<\cdots<A[\pi(n-1)]<A[\pi(n)]
$$

Decision-tree Model

Example:

Sort 3 elements by asking queries: $A[i]<A[j]$, for $i, j \in[3]$

How many Queries are needed? (worst case)

Lemma

At least 3 queries are needed to sort 3 elements.
Proof. Let the three elements be a, b, c. Suppose that the first query is $a<b$ and suppose that the answer is yes. (if it is not then relabel the elements a, b, c). We are left with 3 scenarios:

$$
\text { 1. } a<b<c \quad 2 . a<c<b \quad 3 . c<a<b
$$

Next we either ask $a<c$ or $b<c$. Suppose that we ask $a<c$. Then, if the answer is yes then we are left with cases 1 and 2 and we need an additional query. Suppose that we ask $b<c$. Then, if the answer is no then we are left with cases 2 and 3 and we need an additional query.

Decision-tree Model (2)

Every Guessing Strategy is a Decision-tree

Observe:

- Every leaf is a permutation
- An execution is a root-to-leaf path

Decision-tree Model (2)

Every Guessing Strategy is a Decision-tree

Observe:

- Every leaf is a permutation
- An execution is a root-to-leaf path

Decision-tree Model (2)

Every Guessing Strategy is a Decision-tree

Observe:

- Every leaf is a permutation
- An execution is a root-to-leaf path

Sorting Lower Bound

Lemma

Any comparision-based sorting algorithm requires $\Omega(n \log n)$ comparisons.

Proof Observe that decision-tree is a binary tree. Every potential permutation is a leaf. There are n ! leaves. A binary tree of height h has no more than 2^{h} leaves. Hence:

$$
\begin{aligned}
2^{h} & \geq n! \\
h & \geq \log (n!)=\Omega(n \log n) .
\end{aligned}
$$

Comment: Stirling's approximation for n ! can be used for proving $\log (n!)=\Omega(n \log n)$

Counting Sort: Sorting Integers fast

Counting Sort

Input is an array A of integers from $\{0,1,2, \ldots, k\}$, for some integer k

Idea

- For each element x, count number of elements $<x$
- Put x directly into its position
- Difficulty: Multiple elements have the same value

Algorithm

Require: Array A of n integers from $\{0,1,2, \ldots, k\}$, for some integer k Let $C[0 \ldots k]$ be a new array with all entries equal to 0
Store output in array $B[0 \ldots n-1]$
for $i=0, \ldots, n-1$ do $\{$ Count how often each element appears\} $C[A[i]] \leftarrow C[A[i]]+1$
for $i=1, \ldots, k$ do \{Count how many smaller elements appear\}
$C[i] \leftarrow C[i]+C[i-1]$
for $i=n-1, \ldots, 0$ do
$B[C[A[i]]-1] \leftarrow A[i]$
$C[A[i]] \leftarrow C[A[i]]-1$
return m

- Last loop processes A from right to left
- $C[A[i]]$: Number of smaller elements than $A[i]$
- Decrementing $C[A[i]]$: Next element of value $A[i]$ should be left of the current one

Counting Sort: Example

Example: $n=8, k=5$

A| | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 5 | 3 | 0 | 2 | 3 | 0 | 3 | |

Counting Sort: Example

Example: $n=8, k=5$

| |
| :---: | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 5 | 3 | 0 | 2 | 3 | 0 | 3 |

C| 0 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 0 | 2 | 3 | 0 | 1 |

Counting Sort: Example

Example: $n=8, k=5$

A	0	1	2	3	4	5	6	7
2	5	3	0	2	3	0	3	

C| 0 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 0 | 2 | 3 | 0 | 1 |

0 1 2 3 4 5 2 2 4 7 7 8 l

$$
\begin{aligned}
& \text { for } i=n-1, \ldots, 0 \text { do } \\
& B[C[A[i]]-1] \leftarrow A[i] \\
& C[A[i]] \leftarrow C[A[i]]-1
\end{aligned}
$$

Counting Sort: Example

Example: $n=8, k=5$

A	0	1	2	3	4	5	6	7
2	5	3	0	2	3	0	3	

C| 0 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 0 | 2 | 3 | 0 | 1 |

C | 0 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 2 | 4 | 7 | 7 | 8 |

$$
\begin{aligned}
& \text { for } i=n-1, \ldots, 0 \text { do } \\
& B[C[A[i]]-1] \leftarrow A[i] \\
& C[A[i]] \leftarrow C[A[i]]-1
\end{aligned}
$$

Counting Sort: Example

Example: $n=8, k=5$

| |
| :---: | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 5 | 3 | 0 | 2 | 3 | 0 | 3 |

C| 0 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 0 | 2 | 3 | 0 | 1 |

C | 0 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 2 | 4 | 6 | 7 | 8 |

$$
\begin{aligned}
& \text { for } i=n-1, \ldots, 0 \text { do } \\
& B[C[A[i]]-1] \leftarrow A[i] \\
& C[A[i]] \leftarrow C[A[i]]-1
\end{aligned}
$$

Counting Sort: Example

Example: $n=8, k=5$

A| | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 5 | 3 | 0 | 2 | 3 | 0 | 3 | |

C| 0 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 0 | 2 | 3 | 0 | 1 |

$$
\begin{aligned}
& \text { for } i=n-1, \ldots, 0 \text { do } \\
& B[C[A[i]]-1] \leftarrow A[i] \\
& C[A[i]] \leftarrow C[A[i]]-1
\end{aligned}
$$

Counting Sort: Example

Example: $n=8, k=5$

A| | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 5 | 3 | 0 | 2 | 3 | 0 | 3 | |

C| 0 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 0 | 2 | 3 | 0 | 1 |

$$
\begin{aligned}
& \text { for } i=n-1, \ldots, 0 \text { do } \\
& B[C[A[i]]-1] \leftarrow A[i] \\
& C[A[i]] \leftarrow C[A[i]]-1
\end{aligned}
$$

Counting Sort: Example

Example: $n=8, k=5$

A| | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 5 | 3 | 0 | 2 | 3 | 0 | 3 | |

C| 0 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 0 | 2 | 3 | 0 | 1 |

	1			5	6		7
B	0			3	3		

$$
\begin{aligned}
& \text { for } i=n-1, \ldots, 0 \text { do } \\
& B[C[A[i]]-1] \leftarrow A[i] \\
& C[A[i]] \leftarrow C[A[i]]-1
\end{aligned}
$$

Counting Sort: Example

Example: $n=8, k=5$

A| | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 5 | 3 | 0 | 2 | 3 | 0 | 3 | |

C| 0 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 0 | 2 | 3 | 0 | 1 |

	1			5	6		7
B	0			3	3		

$$
\begin{aligned}
& \text { for } i=n-1, \ldots, 0 \text { do } \\
& B[C[A[i]]-1] \leftarrow A[i] \\
& C[A[i]] \leftarrow C[A[i]]-1
\end{aligned}
$$

Counting Sort: Example

Example: $n=8, k=5$

A| | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 5 | 3 | 0 | 2 | 3 | 0 | 3 | |

C| 0 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 0 | 2 | 3 | 0 | 1 |

$$
\begin{aligned}
& \text { for } i=n-1, \ldots, 0 \text { do } \\
& B[C[A[i]]-1] \leftarrow A[i] \\
& C[A[i]] \leftarrow C[A[i]]-1
\end{aligned}
$$

Counting Sort: Example

Example: $n=8, k=5$

A| | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 5 | 3 | 0 | 2 | 3 | 0 | 3 | |

C| 0 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 0 | 2 | 3 | 0 | 1 |

0 1 2 3 4 5 1 2 3 5 7 8

$$
\begin{aligned}
& \text { for } i=n-1, \ldots, 0 \text { do } \\
& B[C[A[i]]-1] \leftarrow A[i] \\
& C[A[i]] \leftarrow C[A[i]]-1
\end{aligned}
$$

Counting Sort: Example

Example: $n=8, k=5$

A| | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 5 | 3 | 0 | 2 | 3 | 0 | 3 | |

C| | 0 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 0 | 2 | 3 | 0 | 1 | |

0 1 2 3 4 5 1 2 3 5 7 8

:---

$$
\begin{aligned}
& \text { for } i=n-1, \ldots, 0 \text { do } \\
& B[C[A[i]]-1] \leftarrow A[i] \\
& C[A[i]] \leftarrow C[A[i]]-1
\end{aligned}
$$

Counting Sort: Example

Example: $n=8, k=5$

A| | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 5 | 3 | 0 | 2 | 3 | 0 | 3 | |

C| | 0 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 0 | 2 | 3 | 0 | 1 | |

0 1 2 3 4 5 0 2 3 5 7 8

:---

$$
\begin{aligned}
& \text { for } i=n-1, \ldots, 0 \text { do } \\
& B[C[A[i]]-1] \leftarrow A[i] \\
& C[A[i]] \leftarrow C[A[i]]-1
\end{aligned}
$$

Counting Sort: Example

Example: $n=8, k=5$

A| | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 5 | 3 | 0 | 2 | 3 | 0 | 3 | |

C	0	1	2	3	4	5
2	0	2	3	0	1	

C | 0 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 2 | 2 | 4 | 7 | 7 |

$$
\begin{aligned}
& \text { for } i=n-1, \ldots, 0 \text { do } \\
& B[C[A[i]]-1] \leftarrow A[i] \\
& C[A[i]] \leftarrow C[A[i]]-1
\end{aligned}
$$

Analysis: Counting Sort

Runtime:

$O(n)+O(k)+O(n)=O(n+k)$

- Counting Sort has runtime $O(n)$ if $k=O(n)$
- This beats the lower bound for comparison-based sorting

$$
\begin{gathered}
\text { for } i=0, \ldots, n-1 \text { do } \\
C[A[i]] \leftarrow C[A[i]]+1 \\
\text { for } i=1, \ldots, k \text { do } \\
C[i] \leftarrow C[i]+C[i-1] \\
\text { for } i=n-1, \ldots, 0 \text { do } \\
B[C[A[i]]-1] \leftarrow A[i] \\
C[A[i]] \leftarrow C[A[i]]-1
\end{gathered}
$$

Stable? In-place? Yes, it is stable (important!) No, not in-place

Correctness Loop Invariant

Radix Sort

Radix Sort

Input is an array A of d digits integers, each digit is from the set $\{0,1, \ldots, b-1\}$

Examples

- $b=2, d=5$. E.g. 01101 (binary numbers)
- $b=10, d=4$. E.g. 9714

Idea

- Iterate through the digits
- Sort according to the current digit

Radix Sort (2)

Radix Sort Algorithm

> for $i=1, \ldots, d$ do
> Use a stable sort algorithm to sort array A on digit i
(least significant digit is digit 1)

Example

329		720		720		329
457		355		329		355
657		436		436		436
839	\rightarrow	457	\rightarrow	839	\rightarrow	457
436		657		355		657
720		329		457		720
355		839		657		839

Radix Sort (3)

Analysis

Lemma

Given n d-digit number in which each digit can take on up to b possible values. Radix-sort correctly sorts these numbers in $O(d(n+b))$ time if the stable sort it uses takes $O(n+b)$ time.

Proof Runtime is obvious. Correctness follows by induction on the columns being sorted.

Observe: If $d=O(1)$ and $b=O(n)$ then the runtime is $O(n)$!

