Lecture 10: Quicksort COMS10007 - Algorithms

Dr. Christian Konrad

26.02.2019

Quicksort

Sorting Algorithms seen so far:

	Worst case	Average case	stable?	in place?
Insertion Sort	$O\left(n^{2}\right)$	$O\left(n^{2}\right)$	yes	yes
Mergesort	$O(n \log n)$	$O(n \log n)$	yes	no
Heapsort	$O(n \log n)$	$O(n \log n)$	no	yes
Quicksort	$O\left(n^{2}\right)$	$O(n \log n)$	no	yes

Quicksort

- Very efficient in practice!
- In place version of Mergesort:

$$
\begin{aligned}
& A\left[0,\left\lfloor\frac{n}{2}\right\rfloor\right] \leftarrow \operatorname{MergeSort}\left(A\left[0,\left\lfloor\frac{n}{2}\right\rfloor\right]\right) \\
& A\left[\left\lfloor\frac{n}{2}\right]+1, n-1\right] \leftarrow \operatorname{MergeSort}\left(A\left[\left\lfloor\frac{n}{2}\right\rfloor, n-1\right]\right) \\
& A \leftarrow \operatorname{Merge}(A) \\
& \text { return } A
\end{aligned}
$$

recursive calls in mergesort

Merge Sort versus Quick Sort

Mergesort versus Quicksort

- Mergesort: First solve subproblems recursively, then merge their solutions
- Quicksort: First partition problem into two subproblems in a clever way so that no extra work is needed when combining the solutions to the subproblems, then solve subproblems recursively

Quicksort

Divide and Conquer Algorithm:

- Divide: Chose a good pivot $A[q]$. Rearrange A such that every element $\leq A[q]$ is left of $A[q]$ in the resulting ordering and every element $>A[q]$ is right of $A[q]$ in the resulting ordering. Let p be the new position of $A[q]$.
- Conquer: Sort $A[0, p-1]$ and $A[p+1, n-1]$ recursively.

14	3	9	8	16	2	1	7	11	12	5

- Combine: No work needed

Quicksort

Divide and Conquer Algorithm:

- Divide: Chose a good pivot $A[q]$. Rearrange A such that every element $\leq A[q]$ is left of $A[q]$ in the resulting ordering and every element $>A[q]$ is right of $A[q]$ in the resulting ordering. Let p be the new position of $A[q]$.
- Conquer: Sort $A[0, p-1]$ and $A[p+1, n-1]$ recursively.

- Combine: No work needed

Quicksort

Divide and Conquer Algorithm:

- Divide: Chose a good pivot $A[q]$. Rearrange A such that every element $\leq A[q]$ is left of $A[q]$ in the resulting ordering and every element $>A[q]$ is right of $A[q]$ in the resulting ordering. Let p be the new position of $A[q]$.
- Conquer: Sort $A[0, p-1]$ and $A[p+1, n-1]$ recursively.

14	3	9	8	16	2	1	7	11	12	5

1	2	3	5	7	8	9	11	12	14	16

- Combine: No work needed

Quicksort (2)

We need to address:

(1) We need to be able to rearrange the elements around the pivot in $O(n)$ time
(2) What is a good pivot? Ideally we would like to obtain subproblems of equal/similar sizes

The Partition Step

Partition Step:

- Input: Array A of length n
- Output: Partitioning around pivot $A[n-1]$

```
Require: Array \(A\) of length \(n\)
    \(x \leftarrow A[n-1]\)
    \(i \leftarrow-1\)
    for \(j \leftarrow 0 \ldots n-1\) do
        if \(A[j] \leq x\) then
        \(i \leftarrow i+1\)
        exchange \(A[i]\) with \(A[j]\)
    return \(i\)
    Partition
```

Pivot: Algorithm assumes pivot is $A[n-1]$. Why is this okay?

Example

$$
\begin{aligned}
& x \leftarrow A[n-1] \\
& i \leftarrow-1 \\
& \text { for } j \leftarrow 0 \ldots n-1 \text { do } \\
& \quad \text { if } A[j] \leq x \text { then } \\
& \quad i \leftarrow i+1 \\
& \quad \text { exchange } A[i] \text { with } A[j]
\end{aligned}
$$

$x: 7$

Example

$$
\begin{aligned}
& x \leftarrow A[n-1] \\
& i \leftarrow-1 \\
& \text { for } j \leftarrow 0 \ldots n-1 \text { do } \\
& \quad \text { if } A[j] \leq x \text { then } \\
& \quad i \leftarrow i+1 \\
& \quad \text { exchange } A[i] \text { with } A[j]
\end{aligned}
$$

$$
x: 7
$$

Example

$$
\begin{aligned}
& x \leftarrow A[n-1] \\
& i \leftarrow-1 \\
& \text { for } j \leftarrow 0 \ldots n-1 \text { do } \\
& \text { if } A[j] \leq x \text { then } \\
& \quad i \leftarrow i+1 \\
& \quad \text { exchange } A[i] \text { with } A[j]
\end{aligned}
$$

$$
x: 7
$$

Example

$$
\begin{aligned}
& x \leftarrow A[n-1] \\
& i \leftarrow-1 \\
& \text { for } j \leftarrow 0 \ldots n-1 \text { do } \\
& \quad \text { if } A[j] \leq x \text { then } \\
& \quad i \leftarrow i+1 \\
& \quad \text { exchange } A[i] \text { with } A[j]
\end{aligned}
$$

$$
x: 7
$$

Example

$$
\begin{aligned}
& x \leftarrow A[n-1] \\
& i \leftarrow-1 \\
& \text { for } j \leftarrow 0 \ldots n-1 \text { do } \\
& \quad \text { if } A[j] \leq x \text { then } \\
& \\
& \quad i \leftarrow i+1 \\
& \quad \text { exchange } A[i] \text { with } A[j]
\end{aligned}
$$

$x: 7$

Example

$$
\begin{aligned}
& x \leftarrow A[n-1] \\
& i \leftarrow-1 \\
& \text { for } j \leftarrow 0 \ldots n-1 \text { do } \\
& \quad \text { if } A[j] \leq x \text { then } \\
& \\
& \quad i \leftarrow i+1 \\
& \quad \text { exchange } A[i] \text { with } A[j]
\end{aligned}
$$

$x: 7$

Example

$$
\begin{aligned}
& x \leftarrow A[n-1] \\
& i \leftarrow-1 \\
& \text { for } j \leftarrow 0 \ldots n-1 \text { do } \\
& \quad \text { if } A[j] \leq x \text { then } \\
& \\
& \quad i \leftarrow i+1 \\
& \quad \text { exchange } A[i] \text { with } A[j]
\end{aligned}
$$

$x: 7$

Example

$$
\begin{aligned}
& x \leftarrow A[n-1] \\
& i \leftarrow-1 \\
& \text { for } j \leftarrow 0 \ldots n-1 \text { do } \\
& \text { if } A[j] \leq x \text { then } \\
& \quad i \leftarrow i+1 \\
& \quad \text { exchange } A[i] \text { with } A[j]
\end{aligned}
$$

i									j		
	3	2	9	8	16	14	1	5	11	12	7

$$
x: 7
$$

Example

$$
\begin{aligned}
& x \leftarrow A[n-1] \\
& i \leftarrow-1 \\
& \text { for } j \leftarrow 0 \ldots n-1 \text { do } \\
& \quad \text { if } A[j] \leq x \text { then } \\
& \quad i \leftarrow i+1 \\
& \quad \text { exchange } A[i] \text { with } A[j]
\end{aligned}
$$

i											
	3	2	9	8	16	14	1	5	11	12	7

$$
x: 7
$$

Example

$$
\begin{aligned}
& x \leftarrow A[n-1] \\
& i \leftarrow-1 \\
& \text { for } j \leftarrow 0 \ldots n-1 \text { do } \\
& \quad \text { if } A[j] \leq x \text { then } \\
& \quad i \leftarrow i+1 \\
& \quad \quad \text { exchange } A[i] \text { with } A[j]
\end{aligned}
$$

$x: 7$

Example

$$
\begin{aligned}
& x \leftarrow A[n-1] \\
& i \leftarrow-1 \\
& \text { for } j \leftarrow 0 \ldots n-1 \text { do } \\
& \quad \text { if } A[j] \leq x \text { then } \\
& \quad i \leftarrow i+1 \\
& \quad \text { exchange } A[i] \text { with } A[j]
\end{aligned}
$$

$x: 7$

Example

$$
\begin{aligned}
& x \leftarrow A[n-1] \\
& i \leftarrow-1 \\
& \text { for } j \leftarrow 0 \ldots n-1 \text { do } \\
& \quad \text { if } A[j] \leq x \text { then } \\
& \\
& \quad i \leftarrow i+1 \\
& \quad \text { exchange } A[i] \text { with } A[j]
\end{aligned}
$$

								i			
	3	2	1	5	16	14	9	8	11	12	7

$$
x: 7
$$

Example

$$
\begin{aligned}
& x \leftarrow A[n-1] \\
& i \leftarrow-1 \\
& \text { for } j \leftarrow 0 \ldots n-1 \text { do } \\
& \quad \text { if } A[j] \leq x \text { then } \\
& \\
& \quad i \leftarrow i+1 \\
& \quad \text { exchange } A[i] \text { with } A[j]
\end{aligned}
$$

								i			
	3	2	1	5	16	14	9	8	11	12	7

$$
x: 7
$$

Example

$$
\begin{aligned}
& x \leftarrow A[n-1] \\
& i \leftarrow-1 \\
& \text { for } j \leftarrow 0 \ldots n-1 \text { do } \\
& \quad \text { if } A[j] \leq x \text { then } \\
& \\
& \quad i \leftarrow i+1 \\
& \quad \text { exchange } A[i] \text { with } A[j]
\end{aligned}
$$

								i				
	3	2	1	5	16	14	9	8	11	12	7	

$$
x: 7
$$

Example

$$
\begin{aligned}
& x \leftarrow A[n-1] \\
& i \leftarrow-1 \\
& \text { for } j \leftarrow 0 \ldots n-1 \text { do } \\
& \quad \text { if } A[j] \leq x \text { then } \\
& \\
& \quad i \leftarrow i+1 \\
& \quad \text { exchange } A[i] \text { with } A[j]
\end{aligned}
$$

10	c										
	3	2	1	5	16	14	9	8	11	12	7

$$
x: 7
$$

Example

$$
\begin{aligned}
& x \leftarrow A[n-1] \\
& i \leftarrow-1 \\
& \text { for } j \leftarrow 0 \ldots n-1 \text { do } \\
& \quad \text { if } A[j] \leq x \text { then } \\
& \quad i \leftarrow i+1 \\
& \quad \quad \text { exchange } A[i] \text { with } A[j]
\end{aligned}
$$

10	c										
	3	2	1	5	7	14	9	8	11	12	16

$$
x: 7
$$

Example

$$
\begin{aligned}
& x \leftarrow A[n-1] \\
& i \leftarrow-1 \\
& \text { for } j \leftarrow 0 \ldots n-1 \text { do } \\
& \quad \text { if } A[j] \leq x \text { then } \\
& \quad i \leftarrow i+1 \\
& \quad \quad \text { exchange } A[i] \text { with } A[j]
\end{aligned}
$$

10	i										
	3	2	1	5	7	14	9	8	11	12	16

$$
x: 7
$$

Loop Invariant

Invariant: At the beginning of the for loop, the following holds:
(1) Elements left of i (including i) are smaller or equal to x :

$$
\text { For } 0 \leq k \leq i: A[k] \leq x
$$

(2) Elements right of i (excluding i) and left of j (excluding j) are larger than x :

$$
\text { For } i+1 \leq k \leq j-1: A[k]>x
$$

Proof of Loop Invariant

(1) Left of i (including i): smaller equal to x
(2) Right of i and left of j (excl. j): larger than x

$$
\begin{aligned}
& x \leftarrow A[n-1] \\
& i \leftarrow-1 \\
& \text { for } j \leftarrow 0 \ldots n-1 \text { do } \\
& \quad \text { if } A[j] \leq x \text { then } \\
& \quad i \leftarrow i+1 \\
& \quad \text { exchange } A[i] \text { with } A[j]
\end{aligned}
$$

Initialization: $i=-1, j=0$
i j

	14	3	9	8	16	2	1	5	11	12	7

Proof of Loop Invariant

(1) Left of i (including i): smaller equal to x
(2) Right of i and left of j (excl. j): larger than x

$$
\begin{aligned}
& x \leftarrow A[n-1] \\
& i \leftarrow-1 \\
& \text { for } j \leftarrow 0 \ldots n-1 \text { do } \\
& \quad \text { if } A[j] \leq x \text { then } \\
& \quad i \leftarrow i+1 \\
& \quad \text { exchange } A[i] \text { with } A[j]
\end{aligned}
$$

Initialization: $i=-1, j=0 \quad \checkmark$
i j

	14	3	9	8	16	2	1	5	11	12	7

Proof of Loop Invariant (2)

(1) Left of i (including i): smaller equal to x
(2) Right of i and left of j (excl. j): larger than x

$$
\begin{aligned}
& x \leftarrow A[n-1] \\
& i \leftarrow-1 \\
& \text { for } j \leftarrow 0 \ldots n-1 \text { do } \\
& \quad \text { if } A[j] \leq x \text { then } \\
& \quad i \leftarrow i+1 \\
& \quad \text { exchange } A[i] \text { with } A[j]
\end{aligned}
$$

Maintenance: Two cases:
(1) $A[j]>x$: Then j is incremented

i											
	3	14	9	8	16	2	1	5	11	12	7
x	$\mathrm{x}:$7										

Proof of Loop Invariant (2)

(1) Left of i (including i): smaller equal to x
(2) Right of i and left of j (excl. j): larger than x

$$
\begin{aligned}
& x \leftarrow A[n-1] \\
& i \leftarrow-1 \\
& \text { for } j \leftarrow 0 \ldots n-1 \text { do } \\
& \text { if } A[j] \leq x \text { then } \\
& \quad i \leftarrow i+1 \\
& \quad \text { exchange } A[i] \text { with } A[j]
\end{aligned}
$$

Maintenance: Two cases:
(1) $A[j]>x$: Then j is incremented

j											
	3	14	9	8	16	2	1	5	11	12	7
x	$\mathrm{x}:$7										

Proof of Loop Invariant (2)

(1) Left of i (including i): smaller equal to x
(2) Right of i and left of j (excl. j): larger than x

$$
\begin{aligned}
& x \leftarrow A[n-1] \\
& i \leftarrow-1 \\
& \text { for } j \leftarrow 0 \ldots n-1 \text { do } \\
& \text { if } A[j] \leq x \text { then } \\
& \quad i \leftarrow i+1 \\
& \quad \text { exchange } A[i] \text { with } A[j]
\end{aligned}
$$

Maintenance: Two cases:
(1) $A[j]>x$: Then j is incremented

Proof of Loop Invariant (2)

(1) Left of i (including i): smaller equal to x
(2) Right of i and left of j (excl. j): larger than x

$$
\begin{aligned}
& x \leftarrow A[n-1] \\
& i \leftarrow-1 \\
& \text { for } j \leftarrow 0 \ldots n-1 \text { do } \\
& \quad \text { if } A[j] \leq x \text { then } \\
& \quad i \leftarrow i+1 \\
& \quad \text { exchange } A[i] \text { with } A[j]
\end{aligned}
$$

Maintenance: Two cases:
(1) $A[j]>x$: Then j is incremented
(2) $A[j] \leq x$: Then i is incremented, $A[i]$ and $A[j]$ are exchanged, and j is incremented

i											
	3	14	9	8	16	2	1	5	11	12	7
	x:	 7									

Proof of Loop Invariant (2)

(1) Left of i (including i): smaller equal to x
(2) Right of i and left of j (excl. j): larger than x

$$
\begin{aligned}
& x \leftarrow A[n-1] \\
& i \leftarrow-1 \\
& \text { for } j \leftarrow 0 \ldots n-1 \text { do } \\
& \quad \text { if } A[j] \leq x \text { then } \\
& \quad i \leftarrow i+1 \\
& \quad \text { exchange } A[i] \text { with } A[j]
\end{aligned}
$$

Maintenance: Two cases:
(1) $A[j]>x$: Then j is incremented
(2) $A[j] \leq x$: Then i is incremented, $A[i]$ and $A[j]$ are exchanged, and j is incremented

10	j										
	3	14	9	8	16	2	1	5	11	12	7
x	$\mathrm{x}:$7										

Proof of Loop Invariant (2)

(1) Left of i (including i): smaller equal to x
(2) Right of i and left of j (excl. j): larger than x

$$
\begin{aligned}
& x \leftarrow A[n-1] \\
& i \leftarrow-1 \\
& \text { for } j \leftarrow 0 \ldots n-1 \text { do } \\
& \quad \text { if } A[j] \leq x \text { then } \\
& \quad i \leftarrow i+1 \\
& \quad \text { exchange } A[i] \text { with } A[j]
\end{aligned}
$$

Maintenance: Two cases:
(1) $A[j]>x$: Then j is incremented
(2) $A[j] \leq x$: Then i is incremented, $A[i]$ and $A[j]$ are exchanged, and j is incremented

j											
	3	2	9	8	16	14	1	5	11	12	7
$\mathrm{x}:$	 7										

Proof of Loop Invariant (2)

(1) Left of i (including i): smaller equal to x
(2) Right of i and left of j (excl. j): larger than x

$$
\begin{aligned}
& x \leftarrow A[n-1] \\
& i \leftarrow-1 \\
& \text { for } j \leftarrow 0 \ldots n-1 \text { do } \\
& \text { if } A[j] \leq x \text { then } \\
& \quad i \leftarrow i+1 \\
& \quad \text { exchange } A[i] \text { with } A[j] \\
& \hline
\end{aligned}
$$

Maintenance: Two cases:
(1) $A[j]>x$: Then j is incremented
(2) $A[j] \leq x$: Then i is incremented, $A[i]$ and $A[j]$ are exchanged, and j is incremented

i											
	3	2	9	8	16	14	1	5	11	12	7
$\mathrm{x}:$	 7										

Proof of Loop Invariant (2)

(1) Left of i (including i): smaller equal to x
(2) Right of i and left of j (excl. j): larger than x

$$
\begin{aligned}
& x \leftarrow A[n-1] \\
& i \leftarrow-1 \\
& \text { for } j \leftarrow 0 \ldots n-1 \text { do } \\
& \text { if } A[j] \leq x \text { then } \\
& \quad i \leftarrow i+1 \\
& \quad \text { exchange } A[i] \text { with } A[j] \\
& \hline
\end{aligned}
$$

Maintenance: Two cases:
(1) $A[j]>x$: Then j is incremented
(2) $A[j] \leq x$: Then i is incremented, $A[i]$ and $A[j]$ are exchanged, and j is incremented \checkmark

i											
	3	2	9	8	16	14	1	5	11	12	7
$\mathrm{x}:$	 7										

Proof of Loop Invariant (3)

(1) Left of i (including i): smaller equal to x
(2) Right of i and left of j (excl. j): larger than x

$$
\begin{aligned}
& x \leftarrow A[n-1] \\
& i \leftarrow-1 \\
& \text { for } j \leftarrow 0 \ldots n-1 \text { do } \\
& \text { if } A[j] \leq x \text { then } \\
& \quad i \leftarrow i+1 \\
& \quad \text { exchange } A[i] \text { with } A[j]
\end{aligned}
$$

Termination: (useful property showing that algo. is correct)

- $A[i]$ contains pivot element x that was located initially at position $n-1$
- All elements left of $A[i]$ are smaller equal to x
- All elements right of $A[i]$ are larger than x

Proof of Loop Invariant (3)

(1) Left of i (including i): smaller equal to x
(2) Right of i and left of j (excl. j): larger than x

$$
\begin{aligned}
& x \leftarrow A[n-1] \\
& i \leftarrow-1 \\
& \text { for } j \leftarrow 0 \ldots n-1 \text { do } \\
& \text { if } A[j] \leq x \text { then } \\
& \quad i \leftarrow i+1 \\
& \quad \text { exchange } A[i] \text { with } A[j]
\end{aligned}
$$

Termination: (useful property showing that algo. is correct)

- $A[i]$ contains pivot element x that was located initially at position $n-1$
- All elements left of $A[i]$ are smaller equal to x
- All elements right of $A[i]$ are larger than x

Quicksort

Require: array A of length n if $n \leq 10$ then

Sort A using your favourite sorting algorithm else
$i \leftarrow \operatorname{Partition}(A)$
$\operatorname{Quicksort}(A[0, i-1])$
$\operatorname{Quicksort}(A[i+1, n-1])$
Algorithm QuICKSORT
Termination Condition
Observe that $n \leq 10$ is arbitrary (any constant would do)

What is the runtime of Quicksort?

