Lecture 8 and 9: Trees and Heap Sort COMS10007 - Algorithms

Dr. Christian Konrad

19.02.2019 and 25.02.2019

Sorting Algorithms seen so far

Sorting Algorithms seen so far

- Insertion-Sort: $O(n^2)$ in worst, in place, stable
- Merge-Sort: $O(n \log n)$ in worst case, NOT in place, stable

Heap Sort (best of the two)

- $O(n \log n)$ in worst case, in place, **NOT** stable
- Uses a *heap data structure* (a heap is special tree)

Data Structures

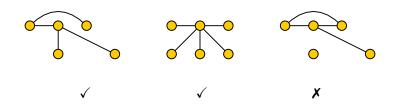
- Data storage format that allows for efficient access and modification
- Building block of many efficient algorithms
- For example, an array is a data structure

Trees

Definition: A tree T = (V, E) of size n is a tuple consisting of

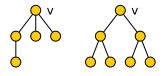
$$V = \{v_1, v_2, \dots, v_n\}$$
 and $E = \{e_1, e_2, \dots, e_{n-1}\}$

with |V| = n and |E| = n - 1 with $e_i = \{v_j, v_k\}$ for some $j \neq k$ such that for every node v_i there is at least one edge e_j such that $v_i \in e_j$. V are the nodes/vertices and E are the edges of T.



Rooted Trees

Definition: (rooted tree) A *rooted* tree is a triple T = (v, V, E) such that T = (V, E) is a tree and $v \in V$ is a designed node that we call the *root* of T.



Definition: (leaf, internal node) A *leaf* in a tree is a node with exactly one incident edge. A node that is not a leaf is called an *internal node*.

Children, Parent, and Degree

Further Definitions:

 The parent of a node v is the closest node on a path from v to the root.
 The root does not have a parent. parent(v) v children(v)

- The children of a node v are v's neighbors except its parent.
- The height of a tree is the length of a longest root-to-leaf path.
- The degree deg(v) of a node v is the number of incident edges to v. Since every edge is incident to two vertices we have

$$\sum_{v \in V} \deg(v) = 2 \cdot |E| = 2(n-1) .$$

 The level of a vertex v is the length of the unique path from the root to v plus 1.

Properties of Trees

Property: Every tree has at least 2 leaves

Proof Let $L \subseteq V$ be the subset of leaves. Suppose that there is at most 1 leaf, i.e., $|L| \le 1$. Then:

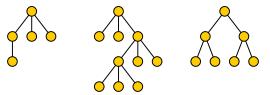
$$\begin{split} \sum_{v \in V} \deg(v) &= \sum_{v \in L} \deg(v) + \sum_{v \in V \setminus L} \deg(v) \\ &\geq |L| \cdot 1 + (|V| - |L|) \cdot 2 = 2|V| - |L| \geq 2n - 1 \;, \end{split}$$

a contradiction to the fact that $\sum_{v \in V} \deg(v) = 2(n-1)$ in every tree.

Binary Trees

Definition: (k-ary tree) A (rooted) tree is k-ary if every node has at most k children. If k=2 then the tree is called binary. A k ary tree is

- full if every internal node has exactly k children,
- complete if all levels except possibily the last is entirely filled (and last level is filled from left to right),
- perfect if all levels are entirely filled.



complete 3-ary tree full 3-ary tree perfect binary tree

Height of Perfect and Complete k-ary Trees

Height of *k*-ary Trees

• The number of nodes in a perfect k-ary tree of height i-1 is

$$\sum_{j=0}^{i-1} k^j = \frac{k^i - 1}{k - 1} \ .$$

• In other words, a perfect k-ary tree on n nodes has height:

$$\log_k(n(k-1)+1) = O(\log_k n) .$$

• Similarly, a complete k-ary tree has height $O(\log_k n)$.

Remark: The runtime of many algorithms that use tree data structures depends on the height of these trees. We are therefore interested in using complete/perfect trees.

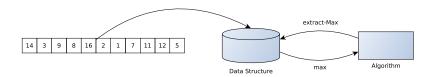
Priority Queues

Priority Queue:

Data structure that allows the following operations:

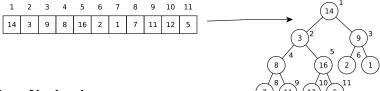
- Build(.): Create data structure given a set of data items
- Extract-Max(.): Remove the maximum element from the data structure
- others...

Sorting using a Priority Queue



From Array to Tree

Interpretation of an Array as a Complete Binary Tree

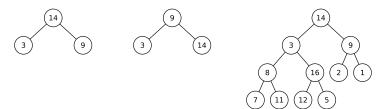


Easy Navigation:

- Parent of i: $\lfloor i/2 \rfloor$
- Left/Right Child of i: 2i and 2i + 1

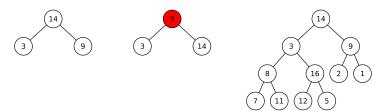
The Heap Property

Key of nodes larger than keys of their children



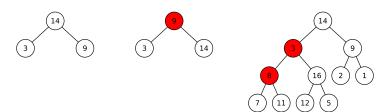
The Heap Property

Key of nodes larger than keys of their children



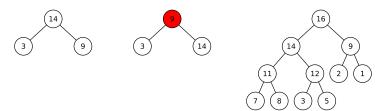
The Heap Property

Key of nodes larger than keys of their children



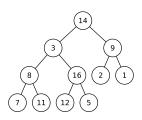
The Heap Property

Key of nodes larger than keys of their children



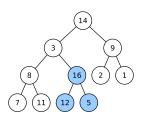
Constructing a Heap: Build(.)

- Traverse tree with regards to right-to-left array ordering
- If node does not fulfill Heap Property: Heapify()



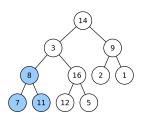
Constructing a Heap: Build(.)

- Traverse tree with regards to right-to-left array ordering
- If node does not fulfill Heap Property: Heapify()



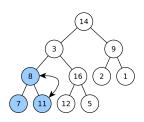
Constructing a Heap: Build(.)

- Traverse tree with regards to right-to-left array ordering
- If node does not fulfill Heap Property: Heapify()



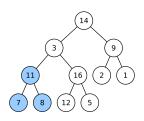
Constructing a Heap: Build(.)

- Traverse tree with regards to right-to-left array ordering
- If node does not fulfill Heap Property: Heapify()



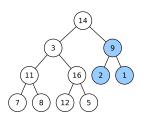
Constructing a Heap: Build(.)

- Traverse tree with regards to right-to-left array ordering
- If node does not fulfill Heap Property: Heapify()



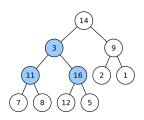
Constructing a Heap: Build(.)

- Traverse tree with regards to right-to-left array ordering
- If node does not fulfill Heap Property: Heapify()



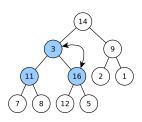
Constructing a Heap: Build(.)

- Traverse tree with regards to right-to-left array ordering
- If node does not fulfill Heap Property: Heapify()



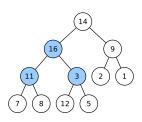
Constructing a Heap: Build(.)

- Traverse tree with regards to right-to-left array ordering
- If node does not fulfill Heap Property: Heapify()



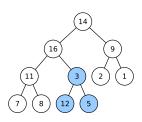
Constructing a Heap: Build(.)

- Traverse tree with regards to right-to-left array ordering
- If node does not fulfill Heap Property: Heapify()



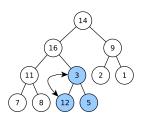
Constructing a Heap: Build(.)

- Traverse tree with regards to right-to-left array ordering
- If node does not fulfill Heap Property: Heapify()



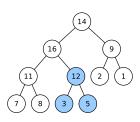
Constructing a Heap: Build(.)

- Traverse tree with regards to right-to-left array ordering
- If node does not fulfill Heap Property: Heapify()



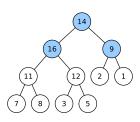
Constructing a Heap: Build(.)

- Traverse tree with regards to right-to-left array ordering
- If node does not fulfill Heap Property: Heapify()



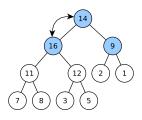
Constructing a Heap: Build(.)

- Traverse tree with regards to right-to-left array ordering
- If node does not fulfill Heap Property: Heapify()



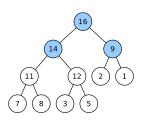
Constructing a Heap: Build(.)

- Traverse tree with regards to right-to-left array ordering
- If node does not fulfill Heap Property: Heapify()



Constructing a Heap: Build(.)

- Traverse tree with regards to right-to-left array ordering
- If node does not fulfill Heap Property: Heapify()



Runtime of Heapify()

Heapify()

Let p be the key of a node and let c_1, c_2 be the keys of its children

- Let $c = \max\{c_1, c_2\}$
- If c > p then exchange nodes with keys p and c
- call **Heapify()** at node with key c

Runtime:

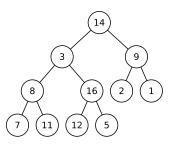
- Exchanging nodes requires time O(1)
- The number of recursive calls is bounded by the height of the tree, i.e., $O(\log n)$
- Runtime of **Heapify**: $O(\log n)$.

Constructing a Heap: Build(.) Runtime $O(n \log n)$

More Precise Analysis of the Heap Construction Step

- Heapify(x): $O(\text{depth of subtree rooted at } x) = O(\log n)$
- Observe: Most nodes close to the "bottom"

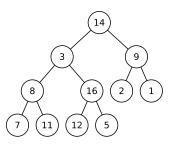
- Let *i* be the largest integer such that $n' := 2^i 1$ and n' < n
- There are at most n' internal nodes (candidates for Heapify())
- These nodes are contained in a perfect binary tree
- This tree has height i-1



More Precise Analysis of the Heap Construction Step

- Heapify(x): $O(\text{depth of subtree rooted at } x) = O(\log n)$
- Observe: Most nodes close to the "bottom"

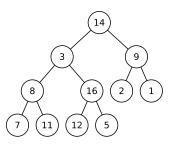
- Let *i* be the largest integer such that $n' := 2^i 1$ and n' < n
- There are at most n' internal nodes (candidates for Heapify())
- These nodes are contained in a perfect binary tree
- This tree has height i-1



More Precise Analysis of the Heap Construction Step

- Heapify(x): $O(\text{depth of subtree rooted at } x) = O(\log n)$
- Observe: Most nodes close to the "bottom"

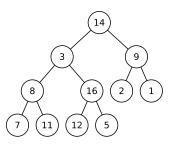
- Let *i* be the largest integer such that $n' := 2^i 1$ and n' < n
- There are at most n' internal nodes (candidates for Heapify())
- These nodes are contained in a perfect binary tree
- This tree has height i-1



More Precise Analysis of the Heap Construction Step

- Heapify(x): $O(\text{depth of subtree rooted at } x) = O(\log n)$
- Observe: Most nodes close to the "bottom"

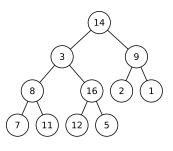
- Let *i* be the largest integer such that $n' := 2^i 1$ and n' < n
- There are at most n' internal nodes (candidates for Heapify())
- These nodes are contained in a perfect binary tree
- This tree has height i-1



More Precise Analysis of the Heap Construction Step

- Heapify(x): $O(\text{depth of subtree rooted at } x) = O(\log n)$
- Observe: Most nodes close to the "bottom"

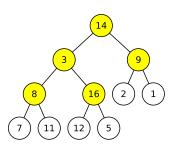
- Let *i* be the largest integer such that $n' := 2^i 1$ and n' < n
- There are at most n' internal nodes (candidates for Heapify())
- These nodes are contained in a perfect binary tree
- This tree has height i-1



More Precise Analysis of the Heap Construction Step

- Heapify(x): $O(\text{depth of subtree rooted at } x) = O(\log n)$
- Observe: Most nodes close to the "bottom"

- Let *i* be the largest integer such that $n' := 2^i 1$ and n' < n
- There are at most n' internal nodes (candidates for Heapify())
- These nodes are contained in a perfect binary tree
- This tree has height i-1



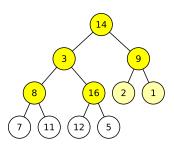
Improved Analysis of Heap Construction

More Precise Analysis of the Heap Construction Step

- Heapify(x): $O(\text{depth of subtree rooted at } x) = O(\log n)$
- Observe: Most nodes close to the "bottom"

Analysis:

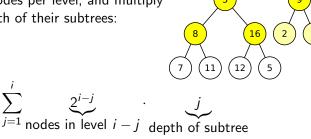
- Let *i* be the largest integer such that $n' := 2^i 1$ and n' < n
- There are at most n' internal nodes (candidates for Heapify())
- These nodes are contained in a perfect binary tree
- This tree has height i-1



Improved Analysis of Heap Construction

Analysis

We sum over all relevant levels, count the number of nodes per level, and multiply with the depth of their subtrees:

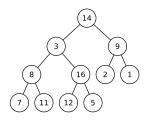


$$\sum_{i=1}^{i} 2^{i-j} \cdot j = 2^{i} \cdot \sum_{i=1}^{i} \frac{j}{2^{j}} = O(2^{i}) = O(n^{i}) = O(n).$$

We'll prove $\sum_{j=1}^{i} \frac{j}{2^{j}} = O(1)$ very soon...!

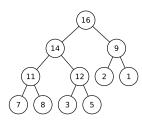
	14	3	9	8	16	2	1	7	11	12	5
--	----	---	---	---	----	---	---	---	----	----	---

- Build-heap()
- 2 Repeat *n* times:
 - Swap root with last element
 - ② Decrease size of heap by 1
 - Heapify(root)



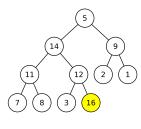
16 14 9 11 12 2 1 7 8 3	5
-------------------------	---

- Build-heap()
- Repeat n times:
 - Swap root with last element
 - ② Decrease size of heap by 1
 - Heapify(root)



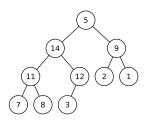
	5	14	9	11	12	2	1	7	8	3	16
--	---	----	---	----	----	---	---	---	---	---	----

- Build-heap()
- Repeat n times:
 - Swap root with last element
 - ② Decrease size of heap by 1
 - Heapify(root)



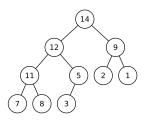
5	14	9	11	12	2	1	7	8	3	16
---	----	---	----	----	---	---	---	---	---	----

- Build-heap()
- Repeat n times:
 - Swap root with last element
 - Oecrease size of heap by 1
 - Heapify(root)



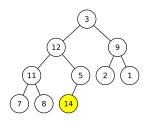
	14	12	9	11	5	2	1	7	8	3	16
--	----	----	---	----	---	---	---	---	---	---	----

- Build-heap()
- 2 Repeat *n* times:
 - Swap root with last element
 - ② Decrease size of heap by 1
 - Heapify(root)



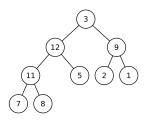
3	12	9	11	5	2	1	7	8	14	16

- Build-heap()
- Repeat n times:
 - Swap root with last element
 - Oecrease size of heap by 1
 - Heapify(root)



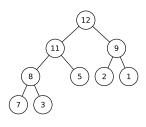
3	12	9	11	5	2	1	7	8	14	16
---	----	---	----	---	---	---	---	---	----	----

- Build-heap()
- Repeat n times:
 - Swap root with last element
 - Oecrease size of heap by 1
 - Heapify(root)



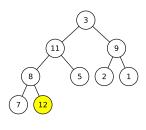
12	11	9	8	5	2	1	7	3	14	16

- Build-heap()
- Repeat n times:
 - Swap root with last element
 - ② Decrease size of heap by 1
 - Heapify(root)



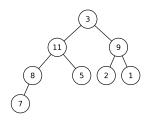
3	11	9	8	5	2	1	7	12	14	16
---	----	---	---	---	---	---	---	----	----	----

- Build-heap()
- Repeat n times:
 - Swap root with last element
 - ② Decrease size of heap by 1
 - Heapify(root)

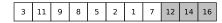


3	11	9	8	5	2	1	7	12	14	16
---	----	---	---	---	---	---	---	----	----	----

- Build-heap()
- Repeat n times:
 - Swap root with last element
 - Oecrease size of heap by 1
 - Heapify(root)



Putting Everything Together



- Build-heap()
- Repeat n times:
 - Swap root with last element
 - Oecrease size of heap by 1
 - Heapify(root)

...

- Build-heap()
- Repeat n times:
 - Swap root with last element
 - Decrease size of heap by 1
 - Heapify(root)

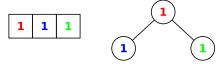
Putting Everything Together

- Build-heap() O(n)
- 2 Repeat *n* times:
 - **1** Swap root with last element O(1)
 - ② Decrease size of heap by 1 O(1)
 - **3** Heapify(root) $O(\log n)$

Runtime: $O(n \log n)$

Example:

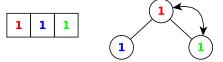
- Build-heap()
- Repeat n times:
 - Swap root with last element
 - Oecrease size of heap by 1
 - Heapify(root)



1 is moved from left to the right past 1 and 1

Example:

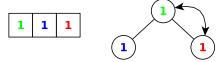
- Build-heap()
- Repeat n times:
 - Swap root with last element
 - Oecrease size of heap by 1
 - Heapify(root)



1 is moved from left to the right past 1 and 1

Example:

- Build-heap()
- Repeat n times:
 - Swap root with last element
 - Decrease size of heap by 1
 - Heapify(root)



1 is moved from left to the right past 1 and 1

Example:

- Build-heap()
- Repeat n times:
 - Swap root with last element
 - Oecrease size of heap by 1
 - Heapify(root)

1 is moved from left to the right past 1 and 1

(Trick for Bounding Sums)

How to bound $\sum_{i=0}^{n-1} \frac{i}{2^i}$:

$$S_{n-1} := \sum_{i=0}^{n-1} \frac{i}{2^i} .$$

Trick: Consider $\frac{1}{2}S_{n-1}$

$$S_{n-1} = \frac{1}{2} + \frac{2}{4} + \frac{3}{8} + \frac{4}{16} + \dots + \frac{n-1}{2^{n-1}}$$

$$\frac{1}{2}S_{n-1} = \frac{1}{4} + \frac{2}{8} + \frac{3}{16} + \dots + \frac{n-1}{2^n}$$

$$S_{n-1} - \frac{1}{2}S_{n-1} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^{n-1}} + \frac{n-1}{2^n}$$

$$= \sum_{i=0}^{n-1} \frac{1}{2^i} + \frac{n-1}{2^n} = \frac{\frac{1}{2^n} - \frac{1}{2}}{\frac{1}{2} - 1} + \frac{n-1}{2^n} = O(1).$$

Where we are

Where we are

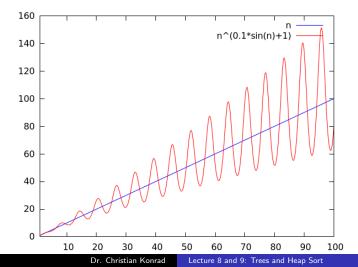
Lecture	Material
1	Peak finding
2	O-notation
3	Theta, Omega, RAM Model
4	Linear/binary search, Induction
5	Loop invariants, insertion-sort
6	Merge sort 1 (divide-and-conquer)
7	Merge sort 2, maximum subarray problem
8	Trees, Heap-sort (1)
9	Heap-sort (2), Exercises
10-	Quick-sort, sorting LB, radix-sort
	Recurrences, Divide-and-conquer, dynamic programming
	Basic data structures

From Piazza/Drop-in/Office Hours...

Are all Functions Asymptotically Comparable?

Let f, g be positive functions. Is the following statement true?

Claim.
$$f(n) \notin O(g(n)) \Rightarrow g(n) \in O(f(n))$$
. false!



Are all Functions Asymptotically Comparable? (2)

$$f(n) = n \text{ and } g(n) = n^{1+0.1\sin(n)}$$

Not all Functions are asymptotically comparable!

- Observe that $n^{1+0.1\sin(n)}$ is infinitely often equal to $n^{1.1}$ and infinintely often equal to $n^{0.9}$
- Therefore, neither $f(n) \in O(g(n))$ nor $g(n) \in O(f(n))$

Another Example:

- f(n) = n
- $g(n) = n^2$ if n even and $g(n) = \sqrt{n}$ if n odd