Lectures 6 and 7: Merge-sort and Maximum

Subarray Problem
COMS10007 - Algorithms

Dr. Christian Konrad

18.01.2019

Dr. Christian Konrad Lectures 6 and 7

Definition of the Sorting Problem

Sorting Problem
@ Input: An array A of n numbers
@ Output: A reordering of As.t. A[0] < A[1] <--- < A[n—1]

Why is it important?
@ Practical relevance: Appears almost everywhere
@ Fundamental algorithmic problem, rich set of techniques

@ There is a non-trivial lower bound for sorting (rare!)

Insertion Sort
o Worst-case and average-case runtime O(n?)

@ Surely we can do better?!

Dr. Christian Konrad Lectures 6 and 7 2/ 22

Insertion sort in Practice on Worst-case Instances

1400 T T T T T T T T
secs

1200

T
|

1000

T
|

800 [B

600 B

400 | 4

200 [B

0 1 1 1 1 1 1 1
0 200000 400000 600000 800000 1e+06 1.2e+061.4e+061.6e+061.8e+0!

n | 46929 | 102428 | 364178 | 1014570
secs | 1.03084 | 4.81622 | 61.2737 | 497.879

Dr. Christian Konrad Lectures 6 and 7 3/ 22

Properties of a Sorting Algorithm

Definition (in place)
A sorting algorithm is in place if at any moment at most O(1)
array elements are stored outside the array

(20[a1]az[a3] a4 [a5]a [a7 [as] a0 a0 |
1 o

Example: Insertion-sort is in place

Definition (stability)
A sorting algorithm is stable if any pair of equal numbers in the
input array appear in the same order in the sorted array

Example: Insertion-sort is stable

Dr. Christian Konrad Lectures 6 and 7 4/ 22

Records, Keys, and Satellite Data

Sorting Complex Data

@ In reality, data that is to be sorted is rarely entirely numerical
(e.g. sort people in a database according to their last name)

@ A data item is often also called a record

@ The key is the part of the record according to which the data
is to be sorted

o Data different to the key is also referred to as satellite data

family name | first name | data of birth | role

Smith Peter 02.10.1982 lecturer
Hills Emma 05.05.1975 reader
Jones Tom 03.02.1977 senior lecturer

Observe: Stability makes more sense when sorting complex data
as opposed to numbers

Dr. Christian Konrad Lectures 6 and 7 5/ 22

Key Idea:
@ Suppose that left half and right half of array is sorted
@ Then we can merge the two sorted halves to a sorted array in

O(n) time:

Merge Operation
@ Copy left half of A to new array B
@ Copy right half of A to new array C

@ Traverse B and C simultaneously from left to right and write
the smallest element at the current positions to A

Dr. Christian Konrad Lectures 6 and 7 6/ 22

Example: Merge Operation

Dr. Christian Konrad Lectures 6 and 7

Example: Merge Operation

Example: Merge Operation

Example: Merge Operation

Example: Merge Operation

Example: Merge Operation

Example: Merge Operation

Example: Merge Operation

Example: Merge Operation

Example: Merge Operation

Analysis: Merge Operation

Merge Operation

@ Input: An array A of integers of length n (n even) such that
A0, 5 — 1] and A[7, n — 1] are sorted
@ Output: Sorted array A

Runtime Analysis:

@ Copy left half of A to B: O(n) operations
@ Copy right half of A to C: O(n) operations
© Merge B and C and store in A: O(n) operations

Overall: O(n) time in worst case

How can we establish that left and right halves are sorted?
Divide and Conquer!

Dr. Christian Konrad Lectures 6 and 7 8/ 22

Merge Sort: A Divide and Conquer Algorithm

Require: Array A of n numbers
if n =1 then
return A
A[0, | 2]] + MercESorT(A[0, | 2]])
All5]+1, n—1] + MERGESORT(A[| 5] +1, n—1])
A + MERGE(A)
return A

MERGESORT

Structure of a Divide and Conquer Algorithm

e Divide the problem into a number of subproblems that are
smaller instances of the same problem.

@ Conquer the subproblems by solving them recursively. If the
subproblems are small enough, just solve them in a
straightforward manner.

@ Combine the solutions to the subproblems into the solution
for the original problem.

Dr. Christian Konrad Lectures 6 and 7

9/ 22

Analyzing MergeSort: An Example

Analyzing MergeSort: An Example

Dr. Christian Konrad Lectures 6 and 7

Analyzing Merge Sort

Analysis ldea:

@ We need to sum up the work spent in each node of the
recursion tree

@ The recursion tree in the example is a complete binary tree

Definition: A tree is a complete binary tree if every node has
either 2 or 0 children.

Definition: A tree is a binary tree if every node has at most 2
children.
(we will talk about trees in much more detail later in this unit)

Questions:
@ How many levels?
@ How many nodes per level?

@ Time spent per node?

Dr. Christian Konrad Lectures 6 and 7 11/ 22

Number of Levels

Level 1

Level 2

Level 3

Level 4

Dr. Christian Konrad Lectures 6 and 7

Number of Levels (2)

Level i:
@ 2/~ nodes (at most)

o Array length in level i is [52;] (at most)

o Runtime of merge operation for each node in level i: O(5%1)

Number of Levels:

o Array length in last level /is 1: [52%] =1

T:Sl:ngfflilog(n)+1§l

o Array length in last but one level / —1is 2: [52;] =2

2,%2>1:»n>2’*2:»|og(n)+2>/

log(n) +1 <1< log(n)+2
Hence, | = [logn] +1 .

Dr. Christian Konrad Lectures 6 and 7 13/ 22

Runtime of Merge Sort

Sum up Work:
o Levels: [z[=o]7]=]a]e]o]7]
I =1[logn] +1
@ Nodes on level i: [12]s[7]2]

at most 211

o Array length in level i: [22] 5] [7]7] BE 5] 7

|
. Budbobd
. HpBRERENEND

Worst-case Runtime:

[log n]+1 [log n]+1 n

i—1 i—1
201 - o ()

[log n]+1

Z O (n) = (Jlog n] + 1) O(n) = O(nlogn) .

Dr. Christian Konrad Lectures 6 and 7 14/ 22

Merge sort in Practice on Worst-case Instances

2 T T T T T T T T T

secs
15
1+
0.5 -
° 0 1e-‘+06 2e-‘+-06 3e-‘i-06 4e-‘+-06 5e-‘i-06 6e-‘|-06 7e-‘i-06 8e-‘i-06 9e-‘+-06 le+07
n | 46920 | 102428 | 364178 | 1014570
secs | 1.03084 | 4.81622 | 61.2737 | 497.879 (Insertion-sort)
secs | 0.007157 | 0.015802 | 0.0645791 | 0.169165 (Merge-sort)

Dr. Christian Konrad Lectures 6 and 7

Generalizing the Analysis

Divide and Conquer Algorithm:

Let A be a divide and conquer algorithm with the following
properties:

@ A performs two recursive calls on input sizes at most n/2
@ The conquer operation in A takes O(n) time
Then:

A has a runtime of O(nlog n) ‘

Dr. Christian Konrad Lectures 6 and 7 16/ 22

Stability and In Place Property?

Stability and In Place Property?
@ Merge sort is stable

@ Merge sort does not sort in place

Dr. Christian Konrad Lectures 6 and 7 17/ 22

Maximum Subarray Problem

Buy Low, Sell High Problem
@ Input: An array of n integers

@ Output: Indices 0 </ < j < n— 1 such that A[j] — A[i] is
maximized

120

110

100

90 -

80 |

70 -

60 |-

50

Dr. Christian Konrad Lectures 6 and 7 18/ 22

Maximum Subarray Problem

Buy Low, Sell High Problem
@ Input: An array of n integers

@ Output: Indices 0 </ < j < n— 1 such that A[j] — A[i] is
maximized

120

110 |

100

90

80 |-

70 -

60 -

50

Dr. Christian Konrad Lectures 6 and 7 18/ 22

Maximum Subarray Problem

Focus on Array of Changes:

Day | 0 1 2 3 4 5 6 7 8 9 10 11
100 113 110 85 105 102 8 63 81 101 94 106
13 -3 25 20 -3 -16 -23 18 20 -7 12

A

A

Maximum Subarray Problem
o Input: Array A of n numbers
@ Output: Indices 0 < i <j < n—1 such that Ej:,.A[/] is
maximum.
Trivial Solution: O(n®) runtime
@ Compute subarrays for every pair i, j

e There are O(n?) pairs, computing the sum takes time O(n)

Dr. Christian Konrad Lectures 6 and 7 19/ 22

Maximum Subarray Problem

Focus on Array of Changes:

Day | 0 1 2 3 4 5 6 7 8 9 10 11
$ [100 113 110 85 105 102 86 63 81 101 94 106
3 -3 25 20 -3 -16 -23 18 20 -7 12

Maximum Subarray Problem
o Input: Array A of n numbers
@ Output: Indices 0 < i <j < n—1 such that Ej:,.A[/] is
maximum.
Trivial Solution: O(n®) runtime
@ Compute subarrays for every pair i, j

e There are O(n?) pairs, computing the sum takes time O(n)

Dr. Christian Konrad Lectures 6 and 7 19/ 22

Divide and Conquer Algorithm for Maximum Subarray

Divide and Conquer:
Compute maximum subarrays in left and right halves of initial array

A=LoR

Combine:
Given maximum subarrays in L and R, we need to compute
maximum subarray in A

Three cases:
@ Maximum subarray is entirely included in L v/
@ Maximum subarray is entirely included in R v/

© Maximum subarray crosses midpoint, i.e., / is included in L
and j is included in R

Dr. Christian Konrad Lectures 6 and 7

20/ 22

Divide and Conquer Algorithm for Maximum Subarray

Maximum Subarray Crosses Midpoint:

o Find maximum subarray A[/,] such that i < 7 and j > §
(assume that n is even)

o Observe that: S All] = 72 Ali] + S Alll

Two Independent Subproblems:

e Find index i such that Z,g:iA[i] is maximized

e Find index j such that EJ;QH A[l] is maximized
-2

We can solve these subproblems in time O(n). (how?)

Dr. Christian Konrad Lectures 6 and 7 21/ 22

Maximum Subarray Problem - Summary

Require: Array A of n numbers
if n=1 then
return A
Recursively compute max. subarray Sy in A[0, [5]
Recursively compute max. subarray Sy in A[[5] +1,n — 1]
Compute maximum subarray S3 that crosses midpoint
return Heaviest of the three subarrays 51, S5, S3

Recursive Algorithm for the Maximum Subarray Problem

Analysis:
@ Two recursive calls with inputs that are only half the size
e Conquer step requires O(n) time
@ Identical to Merge Sort, runtime O(nlog n)!

Dr. Christian Konrad Lectures 6 and 7 22/ 22

