Lecture 2: O-notation (Why Constants Matter Less)
 COMS10007 - Algorithms

Dr. Christian Konrad

29.01.2019

Runtime of Algorithms

Runtime of an Algorithm

- Function that maps the input length n to the number of simple/unit/elementary operations
- The number of array accesses in Peak Finding represents the number of unit operations very well

Which runtime is better?

- $4(n-1)$ (simple peak finding algorithm)
- $5 \log n$ (fast peak finding algorithm)
- $0.1 n^{2}$
- $n \log (0.5 n)$
- $0.01 \cdot 2^{n}$

Answer:

It depends... But there is a favourite

Runtime Comparisons

$$
\begin{gathered}
0.1 n^{2} \leq 0.01 \cdot 2^{n} \leq 5 \log n \leq n \log (n / 2) \leq 4(n-1) \\
(n=10)
\end{gathered}
$$

Runtime Comparisons

$$
\begin{gathered}
5 \log n \leq 0.1 n^{2} \leq n \log (n / 2) \leq 4(n-1) \leq 0.01 \cdot 2^{n} \\
(n=15)
\end{gathered}
$$

Runtime Comparisons

Runtime Comparisons

$5 \log n \leq n \log (n / 2) \leq 4(n-1) \leq 0.1 n^{2}$

$$
(n=50)
$$

Runtime Comparisons

$5 \log n \leq 4(n-1) \leq n \log (n / 2) \leq 0.1 n^{2}$

$$
(n=200)
$$

Order Functions Disregarding Constants

Aim: We would like to sort algorithms according to their runtime
Is algorithm A faster than algorithm B ?

Asymptotic Complexity

- For large enough n, constants seem to matter less
- For small values of n, most algorithms are fast anyway (not always true!)

Solution: Consider asymptotic behavior of functions
An increasing function $f: \mathbb{N} \rightarrow \mathbb{N}$ grows asymptotically at least as fast as an increasing function $g: \mathbb{N} \rightarrow \mathbb{N}$ if there exists an $n_{0} \in \mathbb{N}$ such that for every $n \geq n_{0}$ it holds:

$$
f(n) \geq g(n)
$$

Example: f grows at least as fast as g

Example with Proof

Example: $f(n)=2 n^{3}, g(n)=\frac{1}{2} \cdot 2^{n}$
Then $g(n)$ grows asymptotically at least as fast as $f(n)$ since for every $n \geq 16$ we have $g(n) \geq f(n)$

Proof: Find values of n for which the following holds:

$$
\begin{aligned}
\frac{1}{2} \cdot 2^{n} & \geq 2 n^{3} \\
2^{n-1} & \geq 2^{3 \log n+1} \quad\left(\text { using } n=2^{\log n}\right) \\
n-1 & \geq 3 \log n+1 \\
n & \geq 3 \log n+2
\end{aligned}
$$

This holds for every $n \geq 16$ (which follows from the racetrack principle). Thus, we chose any $n_{0} \geq 16$.

The Racetrack Principle

Racetrack Principle: Let f, g be functions, k an integer and suppose that the following holds:
(1) $f(k) \geq g(k)$ and
(2) $f^{\prime}(n) \geq g^{\prime}(n)$ for every $n \geq k$.

Then for every $n \geq k$, it holds that $f(n) \geq g(n)$.

Example: $n \geq 3 \log n+2$ holds for every $n \geq 16$

- $n \geq 3 \log n+2$ holds for $n=16$
- We have: $(n)^{\prime}=1$ and $(3 \log n+2)^{\prime}=\frac{3}{n \ln 2}<\frac{1}{2}$ for every $n \geq 16$. The result follows.

Order Functions by Asymptotic Growth

If \leq means grows asymptotically at least as fast as then we get:

$$
5 \log n \leq 4(n-1) \leq n \log (n / 2) \leq 0.1 n^{2} \leq 0.01 \cdot 2^{n}
$$

Observe:

"polynomial of logarithms" \leq "polynomial" \leq "exponential"

Big O Notation

Definition: O-notation ("Big O")
Let $g: \mathbb{N} \rightarrow \mathbb{N}$ be a function. Then $O(g(n))$ is the set of functions:
$O(g(n))=\left\{f(n):\right.$ There exist positive constants c and n_{0} such that $0 \leq f(n) \leq c g(n)$ for all $\left.n \geq n_{0}\right\}$

Meaning: $f(n) \in O(g(n))$: " g grows asymptotically at least as fast as f up to constants"

O-Notation: Example

Example: $f(n)=\frac{1}{2} n^{2}-10 n$ and $g(n)=2 n^{2}$

O-Notation: Example

Example: $f(n)=\frac{1}{2} n^{2}-10 n$ and $g(n)=2 n^{2}$

Then: $g(n) \in O(f(n))$, since $6 f(n) \geq g(n)$, for every $n \geq n_{0}=60$

More Examples/Exercises

Recall:

$$
\begin{aligned}
O(g(n))= & \left\{f(n): \text { There exist positive constants } c \text { and } n_{0}\right. \\
& \text { such that } \left.0 \leq f(n) \leq \operatorname{cg}(n) \text { for all } n \geq n_{0}\right\}
\end{aligned}
$$

Exercises:

- $100 n \stackrel{?}{\in} O(n)$ Yes, chose $c=100, n_{0}=1$
- $0.5 n \stackrel{?}{\in} O(n / \log n)$ No: Suppose that such constants c and n_{0} exist. Then, for every $n \geq n_{0}$:

$$
\begin{aligned}
0.5 n & \leq c n / \log n \\
\log n & \leq 2 c \\
n & \leq 2^{2 c}, \text { a contradiction, }
\end{aligned}
$$

since this does not hold for every $n>2^{2 c}$.

Properties

Recipe

- To prove $f \in O(g)$: We need to find constants c, n_{0} as in the statement of the definition
- To prove $f \notin O(g)$: We assume that constants c, n_{0} exist and derive a contradiction
Constants $100 \stackrel{?}{\in} O(1)$ yes, every constant is in $O(1)$

Lemma (Sum of Two Functions)

Suppose that $f, g \in O(h)$. Then: $f+g \in O(h)$.
Proof. Let c, n_{0} be such that $f(n) \leq c h(n)$, for every $n \geq n_{0}$. Let $c^{\prime}, n_{0}^{\prime}$ be such that $g(n) \leq c^{\prime} h(n)$, for every $n \geq n_{0}^{\prime}$. Let $C=c+c^{\prime}$ and let $N_{0}=\max \left\{n_{0}, n_{0}^{\prime}\right\}$. Then:

$$
f(n)+g(n) \leq \operatorname{ch}(n)+c^{\prime} h(n)=C h(n) \text { for every } n \geq N_{0}
$$

Further Properties

Lemma (Polynomials)

Let $f(n)=c_{0}+c_{1} n+c_{2} n^{2}+c_{3} n^{3}+\cdots+c_{k} n^{k}$, for some integer k that is independent of n. Then: $f(n) \in O\left(n^{k}\right)$.

Proof: Apply statement on last slide $O(1)$ times (k times)
Attention: Wrong proof of $n^{2} \in O(n)$: (this is clear wrong)

$$
\begin{aligned}
n^{2} & =n+n+\underbrace{n+\ldots n}_{n-2 \text { times }}=O(n)+O(n)+\underbrace{n+\ldots n}_{n-2 \text { times }} \\
& =O(n)+\underbrace{n+\ldots n}_{n-2 \text { times }}=O(n)+O(n)+\underbrace{n+\ldots n}_{n-3 \text { times }}= \\
& =O(n)+\underbrace{n+\ldots n}_{n-3 \text { times }}=\cdots=O(n) .
\end{aligned}
$$

Application of statement on last slide n times!

Runtime of Algorithms

Tool for the Analysis of Algorithms

- We will express the runtime of algorithms using O-notation
- This allows us to compare the runtimes of algorithms
- Important: Find the slowest growing function f such that our runtime is in $O(f)$ (most algorithms have a runtime of $O\left(2^{n}\right)$)

Important Properties for the Analysis of Algorithms

- Composition of instructions:

$$
f \in O\left(h_{1}\right), g \in O\left(h_{2}\right) \text { then } f+g \in O\left(h_{1}+h_{2}\right)
$$

- Loops: (repetition of instructions)

$$
f \in O\left(h_{1}\right), g \in O\left(h_{2}\right) \text { then } f \cdot g \in O\left(h_{1} \cdot h_{2}\right)
$$

Hierachy

Rough incomplete Hierachy

- Constant time: $O(1)$ (individual operations)
- Sub-logarithmic time: e.g., $O(\log \log n)$
- Logarithmic time: $O(\log n)$ (FASt-PEAK-Finding)
- Poly-logarithmic time: e.g., $O\left(\log ^{2} n\right), O\left(\log ^{10} n\right), \ldots$
- Linear time: $O(n)$ (e.g., time to read the input)
- Quadratic time: $O\left(n^{2}\right)$ (potentially slow on big inputs)
- Polynomial time: $O\left(n^{c}\right)$ (used to be considered efficient)
- Exponential time: $O\left(2^{n}\right)$ (works only on very small inputs)
- Super-exponential time: e.g. $O\left(2^{2^{n}}\right)$ (big trouble...)

