
Lecture 1: Introduction - Peak Finding
COMS10007 - Algorithms

Dr. Christian Konrad

28.01.2019

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding 1 / 18

Algorithms?

Algorithms?

A procedure that solves a computational problem

Computational Problem?

Sort an array of n numbers

Find the median of an array

How often does “Juliet” appear in Shakespeare’s “Romeo And
Juliet”?

How do we factorize a large number?

Shortest/fastest way to travel from Bristol to Glasgow?

Is it possible to partition the set {17, 8, 4, 22, 9, 28, 2} into two
sets s.t. their sums are equal? {8, 9, 28}, {2, 4, 17, 22}

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding 2 / 18

What we want and how we work

Efficiency

The faster the better (runtime)
Use as little memory as possible (space complexity)

Mathematics

We will prove that algorithms run fast and use little memory
We will prove that algorithms are correct
Tools: Induction, algebra, sums, . . . , rigorous arguments

Theoretical Computer Science

No implementations in this course. But please go ahead and write
code...!

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding 3 / 18

What you get out of this course

Goals

First steps towards becoming an algorithms designer

Learn techniques that help you design & analyze algorithms

Understand a set of well-known algorithms

Systematic Approach to Problem/Puzzle Solving

Study a problem at hand, discover structure within problem,
exploit structure and design algorithms

Useful in all areas of Computer Science

Interview questions, Google, Facebook, Amazon, etc.

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding 4 / 18

My Goals

My Goals

Get you excited about Algorithms

Shape new generation of Algorithm Designers at Bristol (who
solve all my open problems...)

Algorithms in Bristol

1st year: Algorithms (Algorithms 1)

2nd year: Data Structures and Algorithms (Algorithms 2)

3rd year: Advanced Algorithms (Algorithms 3)

4th year: in progress (Algorithms 4)

Projects, Theses, PhD students, Seminars

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding 5 / 18

Course Structure

Teaching Units

Lectures: Mondays 10-11am, Tuesdays 2-3pm, Room PHYS
BLDG G42 POWELL, Instructor: Dr. Christian Konrad

Exercise classes/in-class tests: Tuesdays 3pm-4pm (every
fortnight), Room MVB 1.11

Assessment

Exam: Counts 90%

One In-class test: Counts 10% (March, 12th) (Extra time? let
me know as soon as possible)

You pass the course if your final grade is at least 40%

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding 6 / 18

Teaching Staff and Office Hours

Teaching Staff

Unit Director: Christian Konrad

TAs: Thomas Delaney, Igor Dolecki, Nazaal Ibrahim, David
Manda, Perla Jazmin Mayo Diaz de Leon, Matthew Owusu,
Theano Xirouchaki

Drop-in Sessions

Thursdays 5-6pm, MVB 3.44

Fridays 1-2pm, MVB 3.44

My Office Hours Tuesdays 4-5pm in MVB 3.06 (to be confirmed!)

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding 7 / 18

Book

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding 8 / 18

How to Succeed in this Course

Advice

Make sure you understand the course material

Work on provided exercises!

Come to our drop in sessions

Work on provided exercises!!

Piazza for discussions and questions

Work on provided exercises!!!

Come to my office hours

Course material has changed significantly from last year

Course webpage

http://people.cs.bris.ac.uk/~konrad/courses/

COMS10007/coms10007.html

News, announcements

Download slides, exercises, etc.

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding 9 / 18

http://people.cs.bris.ac.uk/~konrad/courses/COMS10007/coms10007.html
http://people.cs.bris.ac.uk/~konrad/courses/COMS10007/coms10007.html

Peak Finding

Let A = a0, a1, . . . , an−1 be an array of integers of length n

0 1 2 3 4 5 6 7 8 9

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9

Definition: (Peak)
Integer ai is a peak if adjacent integers are not larger than ai

Example:

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding 10 / 18

Peak Finding

Let A = a0, a1, . . . , an−1 be an array of integers of length n

0 1 2 3 4 5 6 7 8 9

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9

Definition: (Peak)
Integer ai is a peak if adjacent integers are not larger than ai

Example:

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding 10 / 18

Peak Finding

Let A = a0, a1, . . . , an−1 be an array of integers of length n

0 1 2 3 4 5 6 7 8 9

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9

Definition: (Peak)
Integer ai is a peak if adjacent integers are not larger than ai

Example:

4 3 9 10 14 8 7 2 2 2

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding 10 / 18

Peak Finding

Let A = a0, a1, . . . , an−1 be an array of integers of length n

0 1 2 3 4 5 6 7 8 9

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9

Definition: (Peak)
Integer ai is a peak if adjacent integers are not larger than ai

Example:

4 3 9 10 14 8 7 2 2 2

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding 10 / 18

Peak Finding: Simple Algorithm

Problem Peak Finding: Write algorithm with properties:

1 Input: An integer array of length n

2 Output: A position 0 ≤ i ≤ n − 1 such that ai is a peak

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding 11 / 18

Peak Finding: Simple Algorithm

Problem Peak Finding: Write algorithm with properties:

1 Input: An integer array of length n

2 Output: A position 0 ≤ i ≤ n − 1 such that ai is a peak

i n t peak (i n t ∗A, i n t l e n) {
i f (A [0] >= A[1])

r e t u r n 0 ;
i f (A[l en −1] >= A[len −2])

r e t u r n l en −1;

f o r (i n t i =1; i < l en −1; i=i +1) {
i f (A[i] >= A[i −1] && A[i] >= A[i +1])

r e t u r n i ;
}

r e t u r n −1;
}

C++ code

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding 11 / 18

Peak Finding: Simple Algorithm

Problem Peak Finding: Write algorithm with properties:

1 Input: An integer array of length n

2 Output: A position 0 ≤ i ≤ n − 1 such that ai is a peak

Require: Integer array A of length n
if A[0] ≥ A[1] then

return 0
if A[n − 1] ≥ A[n − 2] then

return n − 1
for i = 1 . . . n − 2 do

if A[i] ≥ A[i − 1] and A[i] ≥ A[i + 1] then
return i

return −1

Pseudo code

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding 11 / 18

Peak Finding: Problem well-defined?

Is Peak Finding well defined? Does every array have a peak?

Lemma

Every integer array has at least one peak.

Proof.

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding 12 / 18

Peak Finding: Problem well-defined?

Is Peak Finding well defined? Does every array have a peak?

Lemma

Every integer array has at least one peak.

Proof.

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding 12 / 18

Peak Finding: Problem well-defined?

Is Peak Finding well defined? Does every array have a peak?

Lemma

Every integer array has at least one peak.

Proof.
Let A be an integer array of length n. Suppose for the sake of a
contradiction that A does not have a peak. Then a1 > a0 since
otherwise a0 is a peak. But then a2 > a1 since otherwise a1 is a
peak. Continuing, for the same reason, ai > ai−1 since otherwise
ai−1 is a peak, for every i ≤ n − 1. But this implies an−1 > an−2

and hence an−1 is a peak. A contradiction. Hence, every array has
a peak.

0 1 2 3 4 5 6

a0 a1 a2 a3 a4 a5 a6

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding 12 / 18

Peak Finding: Problem well-defined?

Is Peak Finding well defined? Does every array have a peak?

Lemma

Every integer array has at least one peak.

Proof.
Let A be an integer array of length n. Suppose for the sake of a
contradiction that A does not have a peak. Then a1 > a0 since
otherwise a0 is a peak. But then a2 > a1 since otherwise a1 is a
peak. Continuing, for the same reason, ai > ai−1 since otherwise
ai−1 is a peak, for every i ≤ n − 1. But this implies an−1 > an−2

and hence an−1 is a peak. A contradiction. Hence, every array has
a peak.

0 1 2 3 4 5 6

a0 > a0 a2 a3 a4 a5 a6

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding 12 / 18

Peak Finding: Problem well-defined?

Is Peak Finding well defined? Does every array have a peak?

Lemma

Every integer array has at least one peak.

Proof.
Let A be an integer array of length n. Suppose for the sake of a
contradiction that A does not have a peak. Then a1 > a0 since
otherwise a0 is a peak. But then a2 > a1 since otherwise a1 is a
peak. Continuing, for the same reason, ai > ai−1 since otherwise
ai−1 is a peak, for every i ≤ n − 1. But this implies an−1 > an−2

and hence an−1 is a peak. A contradiction. Hence, every array has
a peak.

0 1 2 3 4 5 6

a0 > a0 > a1 a3 a4 a5 a6

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding 12 / 18

Peak Finding: Problem well-defined?

Is Peak Finding well defined? Does every array have a peak?

Lemma

Every integer array has at least one peak.

Proof.
Let A be an integer array of length n. Suppose for the sake of a
contradiction that A does not have a peak. Then a1 > a0 since
otherwise a0 is a peak. But then a2 > a1 since otherwise a1 is a
peak. Continuing, for the same reason, ai > ai−1 since otherwise
ai−1 is a peak, for every i ≤ n − 1. But this implies an−1 > an−2

and hence an−1 is a peak. A contradiction. Hence, every array has
a peak.

0 1 2 3 4 5 6

a0 > a0 > a1 > a2 > a3 > a4 > a5

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding 12 / 18

Peak Finding: Problem well-defined?

Is Peak Finding well defined? Does every array have a peak?

Lemma

Every integer array has at least one peak.

Proof.
Every maximum is a peak. (Shorter and immediately convincing!)

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding 12 / 18

Peak Finding: How fast is the Simple Algorithm?

How fast is our Algorithm?

Require: Integer array A of length n
if A[0] ≥ A[1] then

return 0
if A[n − 1] ≥ A[n − 2] then

return n − 1
for i = 1 . . . n − 2 do

if A[i] ≥ A[i − 1] and A[i] ≥ A[i + 1] then
return i

return −1

How often do we look at the array elements? (worst case!)

A[0] and A[n − 1]: twice

A[1] . . .A[n − 2]: 4 times

Overall: 2 + 2 + (n − 2) · 4 = 4(n − 1)

Can we do better?!

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding 13 / 18

Peak Finding: An even faster Algorithm

Finding Peaks even Faster: Fast-Peak-Finding

1 if A is of length 1 then return 0

2 if A is of length 2 then compare A[0] and A[1] and
return position of larger element

3 if A[bn/2c] is a peak then return bn/2c
4 Otherwise, if A[bn/2c − 1] ≥ A[bn/2c] then

return Fast-Peak-Finding(A[0, bn/2c − 1])

5 else
return bn/2c+ 1+

Fast-Peak-Finding(A[bn/2c+ 1, n − 1])

Comments:

Fast-Peak-Finding is recursive (it calls itself)

bxc is the floor function (dxe: ceiling)

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding 14 / 18

Peak Finding: Example

Example:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 7 22 47 36 33 31 30 25 21 20 15 7 4 10 22

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding 15 / 18

Peak Finding: Example

Example:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 7 22 47 36 33 31 30 25 21 20 15 7 4 10 22

Check whether A[bn/2c] = A[b16/2c] = A[8] is a peak

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding 15 / 18

Peak Finding: Example

Example:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 7 22 47 36 33 31 30 25 21 20 15 7 4 10 22

If A[7] ≥ A[8] then return Fast-Peak-Finding(A[0, 7])

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding 15 / 18

Peak Finding: Example

Example:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 7 22 47 36 33 31 30 25 21 20 15 7 4 10 22

Length of subarray is 8

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding 15 / 18

Peak Finding: Example

Example:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 7 22 47 36 33 31 30 25 21 20 15 7 4 10 22

Check whether A[bn/2c] = A[b8/2c] = A[4] is a peak

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding 15 / 18

Peak Finding: Example

Example:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 7 22 47 36 33 31 30 25 21 20 15 7 4 10 22

If A[3] ≥ A[4] then return Fast-Peak-Finding(A[0, 3])

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding 15 / 18

Peak Finding: Example

Example:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 7 22 47 36 33 31 30 25 21 20 15 7 4 10 22

Length of subarray is 4

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding 15 / 18

Peak Finding: Example

Example:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 7 22 47 36 33 31 30 25 21 20 15 7 4 10 22

Check whether A[bn/2c] = A[b4/2c] = A[2] is a peak

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding 15 / 18

Peak Finding: Example

Example:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 7 22 47 36 33 31 30 25 21 20 15 7 4 10 22

If A[1] ≥ A[2] then return Fast-Peak-Finding(A[0, 1])

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding 15 / 18

Peak Finding: Example

Example:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 7 22 47 36 33 31 30 25 21 20 15 7 4 10 22

Else return Fast-Peak-Finding(A[3]), which returns 3

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding 15 / 18

Peak Finding: How fast is the Improved Algorithm?

How often does the Algorithm look at the array elements?

Without the recursive calls, the algorithm looks at the array
elements at most 5 times

Let R(n) be the number of calls to Fast-Peak-Finding
when the input array is of length n. Then:

R(1) = R(2) = 1

R(n) ≤ R(bn/2c) + 1 , for n ≥ 3 .

Solving the recurrence (see lecture on recurrences):

R(n) ≤ R(bn/2c) + 1 ≤ R(n/2) + 1 = R(bn/4c) + 2

≤ R(n/4) + 2 = · · · ≤ dlog ne .

Hence, we look at most at 5dlog ne array elements!

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding 16 / 18

Peak Finding: Correctness

Why is the Algorithm correct?!

1 if A is of length 1 then return 0

2 if A is of length 2 then compare A[0] and A[1] and
return position of larger element

3 if A[bn/2c] is a peak then return bn/2c
4 Otherwise, if A[bn/2c − 1] ≥ A[bn/2c] then

return Fast-Peak-Finding(A[0, bn/2c − 1])

5 else
return bn/2c+ 1+

Fast-Peak-Finding(A[bn/2c+ 1, n − 1])

Steps 1,2,3
are clearly
correct

Why is step 4 correct? (step 5 is similar)

Need to prove: peak in A[0, bn/2c − 1] is a peak in A

Critical case: bn/2c − 1 is a peak in A[0, bn/2c − 1]

Condition in step 4 guarantees A[bn/2c − 1] ≥ A[bn/2c] and
hence bn/2c − 1 is a peak in A as well (very important!)

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding 17 / 18

Peak Finding: Runtime Comparison

4(n − 1) versus 5 log n

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 2 3 4 5 6 7 8 9 10

number of accesses to the array

Fast-Peak-Finding: 5 log(n)
Slow Peak Finding: 4(n-1)

Conclusion: 5 log n is so much better than 4(n − 1)!

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding 18 / 18

Peak Finding: Runtime Comparison

4(n − 1) versus 5 log n

 0

 50

 100

 150

 200

 250

 300

 350

 400

 10 20 30 40 50 60 70 80 90 100

number of accesses to the array

Fast-Peak-Finding: 5 log(n)
Slow Peak Finding: 4(n-1)

Conclusion: 5 log n is so much better than 4(n − 1)!

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding 18 / 18

Peak Finding: Runtime Comparison

4(n − 1) versus 5 log n

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 100 200 300 400 500 600 700 800 900 1000

number of accesses to the array

Fast-Peak-Finding: 5 log(n)
Slow Peak Finding: 4(n-1)

Conclusion: 5 log n is so much better than 4(n − 1)!

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding 18 / 18

