Lecture 1: Introduction - Peak Finding COMS10007 - Algorithms

Dr. Christian Konrad

28.01.2019

Algorithms?

A procedure that solves a computational problem

Computational Problem?

- Sort an array of *n* numbers
- Find the median of an array
- How often does "Juliet" appear in Shakespeare's "Romeo And Juliet"?
- How do we factorize a large number?
- Shortest/fastest way to travel from Bristol to Glasgow?
- Is it possible to partition the set {17, 8, 4, 22, 9, 28, 2} into two sets s.t. their sums are equal? {8, 9, 28}, {2, 4, 17, 22}

Efficiency

The faster the better (runtime) Use as little memory as possible (space complexity)

Mathematics

We will prove that algorithms run fast and use little memory We will prove that algorithms are correct **Tools:** Induction, algebra, sums, ..., rigorous arguments

Theoretical Computer Science

No implementations in this course. But please go ahead and write code ...!

Goals

- First steps towards becoming an algorithms designer
- Learn techniques that help you design & analyze algorithms
- Understand a set of well-known algorithms

Systematic Approach to Problem/Puzzle Solving

- Study a problem at hand, discover structure within problem, exploit structure and design algorithms
- Useful in all areas of Computer Science
- Interview questions, Google, Facebook, Amazon, etc.

My Goals

- Get you excited about Algorithms
- Shape new generation of Algorithm Designers at Bristol (who solve all my open problems...)

Algorithms in Bristol

- 1st year: Algorithms (Algorithms 1)
- 2nd year: Data Structures and Algorithms (Algorithms 2)
- 3rd year: Advanced Algorithms (Algorithms 3)
- 4th year: in progress (Algorithms 4)

Projects, Theses, PhD students, Seminars

Teaching Units

- Lectures: Mondays 10-11am, Tuesdays 2-3pm, Room PHYS BLDG G42 POWELL, Instructor: Dr. Christian Konrad
- Exercise classes/in-class tests: Tuesdays 3pm-4pm (every fortnight), Room MVB 1.11

Assessment

- Exam: Counts 90%
- One In-class test: Counts 10% (March, 12th) (Extra time? let me know as soon as possible)
- \bullet You pass the course if your final grade is at least 40%

Teaching Staff

- Unit Director: Christian Konrad
- TAs: Thomas Delaney, Igor Dolecki, Nazaal Ibrahim, David Manda, Perla Jazmin Mayo Diaz de Leon, Matthew Owusu, Theano Xirouchaki

Drop-in Sessions

- Thursdays 5-6pm, MVB 3.44
- Fridays 1-2pm, MVB 3.44

My Office Hours Tuesdays 4-5pm in MVB 3.06 (to be confirmed!)

How to Succeed in this Course

Advice

- Make sure you understand the course material
- Work on provided exercises!
- Come to our drop in sessions
- Work on provided exercises!!
- Piazza for discussions and questions
- Work on provided exercises!!!
- Come to my office hours
- Course material has changed significantly from last year

Course webpage

http://people.cs.bris.ac.uk/~konrad/courses/ COMS10007/coms10007.html

- News, announcements
- Download slides, exercises, etc.

Let $A = a_0, a_1, \ldots, a_{n-1}$ be an array of integers of length n

0	1	2	3	4	5	6	7	8	9
a ₀	a ₁	a 2	a ₃	a 4	<i>a</i> 5	<i>a</i> 6	<i>а</i> 7	a 8	ag

Definition: (Peak) Integer *a_i* is a *peak* if adjacent integers are not larger than *a_i*

Let $A = a_0, a_1, \ldots, a_{n-1}$ be an array of integers of length n

0	1	2	3	4	5	6	7	8	9
a ₀	a ₁	a 2	a ₃	a 4	<i>a</i> 5	<i>a</i> 6	<i>а</i> 7	a 8	ag

Definition: (Peak) Integer *a_i* is a *peak* if adjacent integers are not larger than *a_i*

Let $A = a_0, a_1, \ldots, a_{n-1}$ be an array of integers of length n

0	1	2	3	4	5	6	7	8	9
a ₀	a ₁	a 2	a ₃	a 4	<i>a</i> 5	<i>a</i> 6	<i>а</i> 7	a 8	ag

Definition: (Peak) Integer *a_i* is a *peak* if adjacent integers are not larger than *a_i*

Let $A = a_0, a_1, \ldots, a_{n-1}$ be an array of integers of length n

0	1	2	3	4	5	6	7	8	9
<i>a</i> 0	a ₁	a 2	a ₃	a4	<i>a</i> 5	<i>a</i> 6	<i>а</i> 7	a 8	a g

Definition: (Peak) Integer *a_i* is a *peak* if adjacent integers are not larger than *a_i*

Peak Finding: Simple Algorithm

Problem PEAK FINDING: Write algorithm with properties:

- **Input:** An integer array of length *n*
- **② Output:** A position $0 \le i \le n-1$ such that a_i is a peak

Peak Finding: Simple Algorithm

Problem PEAK FINDING: Write algorithm with properties:

- **Input:** An integer array of length *n*
- **Output:** A position $0 \le i \le n-1$ such that a_i is a peak

```
int peak(int *A, int len) {
    if(A[0] >= A[1])
        return 0:
    if(A[len -1] \ge A[len -2])
        return len -1:
    for (int i=1; i < len -1; i=i+1) {
        if(A[i]) >= A[i-1] \&\& A[i] >= A[i+1])
             return i:
    return -1;
```

C++ code

Peak Finding: Simple Algorithm

Problem PEAK FINDING: Write algorithm with properties:

- **Input:** An integer array of length *n*
- **② Output:** A position $0 \le i \le n-1$ such that a_i is a peak

```
Require: Integer array A of length n

if A[0] \ge A[1] then

return 0

if A[n-1] \ge A[n-2] then

return n-1

for i = 1 \dots n-2 do

if A[i] \ge A[i-1] and A[i] \ge A[i+1] then

return i

return -1
```

Pseudo code

Is Peak Finding well defined? Does every array have a peak?

Lemma

Every integer array has at least one peak.

Proof.

Is Peak Finding well defined? Does every array have a peak?

Lemma

Every integer array has at least one peak.

Proof.

Is Peak Finding well defined? Does every array have a peak?

Lemma

Every integer array has at least one peak.

Proof.

Is Peak Finding well defined? Does every array have a peak?

Lemma

Every integer array has at least one peak.

Proof.

Is Peak Finding well defined? Does every array have a peak?

Lemma

Every integer array has at least one peak.

Proof.

Is Peak Finding well defined? Does every array have a peak?

Lemma

Every integer array has at least one peak.

Proof.

Is Peak Finding well defined? Does every array have a peak?

Lemma

Every integer array has at least one peak.

Proof.

Every maximum is a peak. (Shorter and immediately convincing!)

Peak Finding: How fast is the Simple Algorithm?

How fast is our Algorithm?

```
Require: Integer array A of length n

if A[0] \ge A[1] then

return 0

if A[n-1] \ge A[n-2] then

return n-1

for i = 1 \dots n-2 do

if A[i] \ge A[i-1] and A[i] \ge A[i+1] then

return i

return -1
```

How often do we look at the array elements? (worst case!)

• A[0] and A[n-1]: twice Can we do better?! • $A[1] \dots A[n-2]$: 4 times • Overall: $2 + 2 + (n-2) \cdot 4 = 4(n-1)$ Dr. Christian Konrad Lecture 1: Introduction - Peak Finding

Peak Finding: An even faster Algorithm

Finding Peaks even Faster: FAST-PEAK-FINDING

- if A is of length 1 then return 0
- if A is of length 2 then compare A[0] and A[1] and return position of larger element
- **3** if $A[\lfloor n/2 \rfloor]$ is a peak then return $\lfloor n/2 \rfloor$
- Otherwise, if A[⌊n/2⌋ − 1] ≥ A[⌊n/2⌋] then return FAST-PEAK-FINDING(A[0, ⌊n/2⌋ − 1])

else

```
return \lfloor n/2 \rfloor + 1 +
FAST-PEAK-FINDING(A[\lfloor n/2 \rfloor + 1, n - 1])
```

Comments:

- FAST-PEAK-FINDING is recursive (it calls itself)
- $\lfloor x \rfloor$ is the floor function ($\lceil x \rceil$: ceiling)

Check whether $A[\lfloor n/2 \rfloor] = A[\lfloor 16/2 \rfloor] = A[8]$ is a peak

If $A[7] \ge A[8]$ then return FAST-PEAK-FINDING(A[0,7])

Length of subarray is 8

Check whether $A[\lfloor n/2 \rfloor] = A[\lfloor 8/2 \rfloor] = A[4]$ is a peak

If $A[3] \ge A[4]$ then return Fast-Peak-Finding(A[0,3])

Length of subarray is 4

Check whether $A[\lfloor n/2 \rfloor] = A[\lfloor 4/2 \rfloor] = A[2]$ is a peak

If $A[1] \ge A[2]$ then return Fast-Peak-Finding(A[0,1])

Else return FAST-PEAK-FINDING(A[3]), which returns 3

Peak Finding: How fast is the Improved Algorithm?

How often does the Algorithm look at the array elements?

- Without the recursive calls, the algorithm looks at the array elements at most 5 times
- Let R(n) be the number of calls to FAST-PEAK-FINDING when the input array is of length *n*. Then:

$$egin{array}{rcl} R(1) &=& R(2) = 1 \ R(n) &\leq& R(\lfloor n/2
floor) + 1 \ , \ {
m for} \ n \geq 3 \ . \end{array}$$

• Solving the recurrence (see lecture on recurrences):

$$\begin{array}{rcl} R(n) & \leq & R(\lfloor n/2 \rfloor) + 1 \leq R(n/2) + 1 = R(\lfloor n/4 \rfloor) + 2 \\ & \leq & R(n/4) + 2 = \cdots \leq \lceil \log n \rceil \end{array}.$$

• Hence, we look at most at $5 \lceil \log n \rceil$ array elements!

Peak Finding: Correctness

Why is the Algorithm correct?!

Steps 1,2,3 are clearly correct **if** A is of length 1 **then return** 0

- if A is of length 2 then compare A[0] and A[1] and return position of larger element
- **3** if $A[\lfloor n/2 \rfloor]$ is a peak then return $\lfloor n/2 \rfloor$
- Otherwise, if A[⌊n/2⌋ − 1] ≥ A[⌊n/2⌋] then return FAST-PEAK-FINDING(A[0, ⌊n/2⌋ − 1])
- else

return $\lfloor n/2 \rfloor + 1 +$ FAST-PEAK-FINDING(A[|n/2| + 1, n - 1])

Why is step 4 correct? (step 5 is similar)

- Need to prove: peak in $A[0, \lfloor n/2 \rfloor 1]$ is a peak in A
- Critical case: $\lfloor n/2 \rfloor 1$ is a peak in $A[0, \lfloor n/2 \rfloor 1]$
- Condition in step 4 guarantees A[⌊n/2⌋ − 1] ≥ A[⌊n/2⌋] and hence ⌊n/2⌋ − 1 is a peak in A as well (very important!)

